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Abstract
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1 Introduction

1.1 Intransitive Indifference and Semiorders

The standard rationality assumption in economic theory states that individuals have

or should have transitive preferences.1 A common argument to support the transitivity

requirement is that, if individuals do not have transitive preferences, then they are subject

to money pumps (Fishburn, 1991). Yet, intransitivity of preferences is frequently observed

through choices individuals make in real life and in experiments (May, 1954; Tversky, 1969).

Intransitive indifference is a certain type of intransitivity of preferences: an individual

can be indifferent between x and y and also y and z, but not necessarily between x and z.

Formal studies of the idea of intransitive indifference go back to as early as the 19th

century (Weber, 1834; Fechner, 1860). The Weber-Fechner law states that a small increase in

the physical stimulus may not result in a change in perception, which suggests intransitivity

of perceptional abilities.

A notable example was given by Jules Henri Poincaré (1905):2

Sometimes we are able to make the distinction between two sensations while we

cannot distinguish them from a third sensation. For example, we can easily make

the distinction between a weight of 12 grams and a weight of 10 grams, but we

are not able to distinguish each of them from a weight of 11 grams. This fact

can symbolically be written: A � B, B � C, A   C.

Armstrong (1939, 1948, 1950) has repeatedly questioned the assumption of transitivity

of preferences and concluded:3

That indifference is not transitive is indisputable, and a world in which it were

transitive is indeed unthinkable.

Luce (1956) introduced a way to capture the idea of intransitive indifference. He coined

the term semiorder by introducing axioms for a binary relation so that it can represent

preferences allowing for intransitive indifference. Luce (1956) also illustrated how semiorders

can be used to capture the concept of just noticeable difference in psychophysics. Since then,

semiorders have been studied extensively in preference, choice, and utility theory (Fishburn,

1970a; Pirlot & Vincke, 1997; Aleskerov, Bouyssou, & Monjardet, 2007).

1An individual has transitive preferences if whenever the individual thinks that x is at least as good as
y and y is at least as good as z, then x is at least as good as z.

2This quotation appears in Pirlot and Vincke (1997, p. 19).
3This quotation appears in Armstrong (1948, p. 3).
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1.2 Related Literature

One of the most fruitful branches of modern economic theory, which has emerged from

the seminal work of von Neumann and Morgenstern (1944), has been decision making under

uncertainty. In many fields, such as decision theory, game theory, and financial economics,

the expected utility theorem of von Neumann and Morgenstern has helped in explaining how

individuals behave when they face uncertainty.

The axioms that a decision maker’s preferences have to satisfy in order for the decision

maker to act as if having an expected utility function à la von Neumann-Morgenstern have

been challenged by many (e.g., Allais (1953); Ellsberg (1961)). Some of these axioms are

modified or removed in order to explain other types of behavior that are frequently observed

in different economic settings (e.g., Kahneman and Tversky (1979); Gilboa and Schmeidler

(1989)). With a similar purpose, in this paper, we relax the transitivity axiom and try

to understand and characterize the behavior of individuals, for whom indifference is not

transitive, under uncertainty.

The behavior we are interested in is often discussed in various contexts when modeling

bounded rationality. A decision maker may deviate from rationality by choosing an alter-

native which is not the optimum but that is rather “satisficing” (Simon, 1955). Similarly, a

player (a decision maker in a game) may deviate slightly from rationality by playing so as

to almost, but not quite, maximize utility; i.e., by playing to obtain a payoff that is within

“epsilon” of the maximal payoff, as is the case for epsilon equilibrium (Radner, 1980; Au-

mann, 1997). What unifies such models is that the decision maker’s preferences exhibit thick

indifference curves, demonstrating a weaker form of transitivity, which can be captured by

intransitive indifference.

In this paper, we focus on a particular representation of semiorders that provides a

utility representation with a positive constant threshold as in Scott and Suppes (1958). Such

representations are usually referred to as Scott-Suppes representations. Our representation

theorem fully characterizes an expected Scott-Suppes utility representation that is the natural

analog of the expected utility theorem of von Neumann and Morgenstern (1944).

A utility function together with a strictly positive constant threshold is said to be a

Scott-Suppes representation of a semiorder if an alternative is strictly preferred to another

alternative if and only if the utility of the former is strictly greater than the utility of the latter

plus the (strictly positive) constant threshold. Similarly, a linear utility function together

with a strictly positive constant threshold is said to be an expected Scott-Suppes utility

representation of a semiorder over a set of lotteries if a lottery is strictly preferred to another

lottery if and only if the expected utility of the former (with respect to the particular linear

utility function) is strictly greater than the expected utility of the latter plus the particular

(strictly positive) constant threshold.
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The Scott-Suppes representation is initially obtained for semiorders on finite sets (Scott

& Suppes, 1958). Manders (1981) identifies the conditions under which semiorders on count-

ably infinite sets admit a Scott-Suppes representation. Relatively more recently, necessary

and sufficient conditions for semiorders on uncountable sets to have a Scott-Suppes repre-

sentation have also been obtained by Candeal and Induráin (2010). Neither of these Scott-

Suppes representations focus on risky-choice settings nor do they provide an expected utility

representation à la Scott and Suppes (1958).

Fishburn (1968) studies semiorders in the risky-choice setting. He shows that if a

semiorder on a set of probability distributions satisfies a particular sure-thing axiom, then

indifference becomes transitive. Fishburn (1968) does not provide a representation theo-

rem but instead points out modifications so that a preference relation representable as a

semiorder might preserve intransitive indifference in a risky-choice setting.

The expected Scott-Suppes utility representation, a Scott-Suppes representation in the

risky-choice setting, is noted as an open problem by Fishburn (1968).4 Two papers that

focus on risky-choice settings with intransitive indifference and that come close to but fall

short of providing a characterization for the expected Scott-Suppes utility representation are

Vincke (1980) and Nakamura (1988).

Vincke (1980) focuses on semiordered mixture spaces and provides a representation by

obtaining a linear utility function and a non-negative threshold function. His representation

provides axioms for an expected utility representation with a non-negative variable threshold.

Therefore, Vincke (1980) falls short of providing axioms which would guarantee that his

threshold function becomes a positive constant threshold.

On the other hand, Nakamura (1988) focuses on an interval ordered structure and pro-

vides also a representation by obtaining a linear utility function and a linear non-negative

threshold function. Not only his representation provides axioms for an expected utility rep-

resentation with a non-negative variable threshold but also he provides an additional axiom

that gives a non-negative constant threshold. The interval ordered structures are more gen-

eral structures than semiordered structures since every semiorder is an interval order. Yet,

Nakamura (1988)’s axioms do not imply the expected Scott-Suppes utility representation

since his non-negative constant threshold can be zero. Furthermore, Nakamura (1988)’s

representation does not provide a full characterization since as he notes a weaker axiom

system than his representation might still exist.5 Therefore, Nakamura (1988) falls short of

providing mutually independent axioms that would guarantee a positive constant threshold.

4Fishburn (1968, p. 361): writes, referring to Scott-Suppes representation, “Its obvious counterpart in
the risky-choice setting is P   Q if and only if Epu, P q � 1   Epu,Qq,” where P and Q are lotteries and
Epu, �q is the expected utility with respect to the corresponding lottery. He finishes his paper by pointing
out two routes to be explored to characterize such an expected Scott-Suppes utility representation.

5This is noted in the last sentence of the conclusion section of Nakamura (1988, p. 311).
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1.3 Motivation and Contribution

In this paper, we provide necessary and sufficient conditions for the existence of a Scott-

Suppes representation of a semiorder under uncertainty with the associated utility function

being linear. Hence, our representation theorem fully characterizes the expected Scott-Suppes

utility representation that is the natural analog of the von Neumann-Morgenstern expected

utility theorem for semiorders under uncertainty.

Our motivation for this representation includes both positive and normative perspectives.

First of all, individuals seem to behave as if they cannot differentiate between probabilities

that are close to each other (Tversky, 1969; Kahneman & Tversky, 1979). In fact, with

a similar observation, Allais (1953) points out the possibility to have a descriptive model

of decision making under uncertainty that incorporates the Weber-Fechner law. Rubinstein

(1988) partially fulfills this by focusing on the similarity relations on the probability and prize

spaces. On the other hand, in some situations satisficing behavior is more advisable than

maximizing, considering the costs associated with each behavior.6 Therefore, the expected

Scott-Suppes utility representation can provide both descriptive and prescriptive value for

the theory of decision under uncertainty.

Furthermore, the expected Scott-Suppes utility representation is analytically tractable

and can be used in many applications that study preferences with intransitive indifference

under uncertainty. Therefore, understanding the axioms that imply and are implied by the

expected Scott-Suppes utility representation is important.

As mentioned before, two papers, Vincke (1980) and Nakamura (1988), come close to

providing such axioms but fall short of fully characterizing the expected Scott-Suppes utility

representation. Vincke (1980) imposes the axioms introduced by Herstein and Milnor (1953)

to the natural weak order induced by a semiorder7 in order to obtain a linear utility function.

Our axiomatization is mostly built on that of Vincke (1980). We impose the same axioms

of Herstein and Milnor (1953) on the induced weak order in order to obtain a linear utility

function and provide two additional axioms on top of those of Vincke (1980) to guarantee

that the threshold function becomes a (strictly) positive constant threshold.

On the other hand, Nakamura (1988) focuses on interval orders rather than semiorders in

a risky-choice setting. He imposes a strong Archimedean axiom and two independence axioms

proposed by Fishburn (1968) on an interval order to obtain his representation theorem. This

representation is a generalization of that of Vincke (1980) for interval orders, i.e., it is a

representation by a linear utility function and a non-negative threshold function.

6Consider for example 0.75474310493009812906605943103 and 0.75474310493009812906905943103. Al-
though these probabilities look like the same at first glance, the second one is greater than the first. Even
if one can search for and spot the difference, in most cases it is not worthwhile to do so because of the
associated cognitive costs.

7Luce (1956) shows in his Theorem 1 that every semiorder induces a natural weak order.
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Nakamura (1988) introduces an additional axiom –which we call mixture symmetry– to

show that his non-negative threshold function becomes a non-negative constant threshold. We

employ this axiom of Nakamura (1988) on top of a regularity axiom to obtain our (strictly)

positive constant threshold.

It is easy to see that Nakamura (1988)’s axioms are not sufficient to summarize a behavior

that is different than that of an expected utility maximizer –since the non-negative constant

threshold can turn out to be zero, e.g., Example 9 satisfies all of Nakamura (1988)’s axioms

but cannot be represented with a utility function and a (strictly) positive constant threshold.

Therefore, the representation of Nakamura (1988) falls short of characterizing the expected

Scott-Suppes utility representation as well. Furthermore, Nakamura (1988) points out that

a weaker axiomatization for his representation might exist.

To sum up, our main result, by providing mutually independent axioms that characterizes

the expected Scott-Suppes utility representation, sharpens the results of Vincke (1980) and

Nakamura (1988). It is the natural analog of the von Neumann-Morgenstern expected utility

theorem for semiorders since semiorders are generically associated with Scott-Suppes repre-

sentations. Furthermore, our characterization gives an obvious counterpart of Scott-Suppes

representations in the risky-choice setting, providing a full answer to the open problem noted

by Fishburn (1968). Our representation offers a decision-theoretical interpretation for epsilon

equilibrium as well.

2 Preliminaries

The main result we present in the next section provides a construction of an expected

utility representation for semiorders à la Scott and Suppes (1958). That is, we characterize

an expected Scott-Suppes utility representation for semiorders. To this end, in this section,

we first present preliminaries for semiorders under certainty. Then, we turn our attention

to semiorders under uncertainty and investigate continuity and independence in terms of

semiorders. We also formally define a Scott-Suppes representation and present the expected

utility representation of Vincke (1980), which we employ in the proof of our characterization

of the expected Scott-Suppes utility representation.8

2.1 Semiorders

Throughout this paper, X denotes a non-empty set. We say that R is a binary relation

on X if R � X �X. Whenever for some x, y P X, we have px, yq P R, we write xRy. Also, if

8We refer interested readers for further details to the following: Fishburn (1970a), Beja and Gilboa
(1992), Candeal and Induráin (2010), Fishburn (1970c), Pirlot and Vincke (1997), Kreps (1988), Ok (2007),
Aleskerov et al. (2007).
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px, yq R R, we write  pxRyq. Below, we define some common properties of binary relations.

Definition 1. A binary relation R on X is

• reflexive if for each x P X, x R x,

• irreflexive if for each x P X,  px R xq,

• complete if for each x, y P X, x R y or y R x,

• symmetric if for each x, y P X, x R y implies y R x,

• asymmetric if for each x, y P X, x R y implies  py R xq,

• transitive if for each x, y, z P X, x R y and y R z imply x R z.

• a weak order if it is complete and transitive.

Let R be a reflexive binary relation on X and x, y P X. We define the asymmetric

part of R, denoted P , as x P y if x R y and  py R xq and symmetric part of R, denoted

I, as x I y if x R y and y R x.

Definition 2. Let P and I be two binary relations on X. The pair pP, Iq is a semiorder

on X if

• I is reflexive (reflexivity),

• for each x, y P X, exactly one of x P y, y P x, or x I y holds (trichotomy),

• for each x, y, z, t P X, x P y, y I z, z P t imply x P t (strong intervality),

• for each x, y, z, t P X, x P y, y P z, z I t imply x P t (semitransitivity).

It is easy to see that every weak order is a semiorder. The definition above is slightly

different from the definition of a semiorder introduced by Luce (1956). Both definitions are

equivalent however, so our analysis remains unaffected.9,10

Example 1. We give an example of a canonical semiorder.

Let k P R��. Define pP, Iq on R as: For each x, y P R
9The equivalence of several definitions of a semiorder is established in Pirlot and Vincke (1997, Thm 3.1).

Another very rich reference (in French) establishing similar and more general properties of semiorders is
Monjardet (1978).

10One might wonder why the following axiom is not imposed in the definition of a semiorder: For each
x, y, z, t P X, x I y, y P z, z P t imply x P t. We refer to this axiom as reverse semitransitivity. It turns out
that for any pair of binary relations pP, Iq on X, if I is reflexive and pP, Iq satisfies trichotomy and strong
intervality, i.e., pP, Iq is an interval order (Fishburn, 1970b), then pP, Iq satisfies semitransitivity if and only
if it satisfies reverse semitransitivity. As far as we know, there is not a common name for reverse semitran-
sitivity in the literature. Strong intervality is also referred to as pseudotransitivity in Bridges (1983) and is
equivalent to the Ferrers property –named after the British mathematician N.M. Ferrers. Strong intervality,
semitransitivity, and reverse semitransitivity are together referred to as generalized pseudotransitivity in
Gensemer (1987).
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• x P y if x ¡ y � k,

• x I y if |x� y| ¤ k.

y x� k x z x� k

Figure 1: Example 1

We have x P y and x I z.

If pP, Iq defined in Example 1 were a weak order, then I would be transitive. Yet, we

have intransitive indifference: 0 I k and k I 2k but 2k P 0. Therefore, not every semiorder is

a weak order.

Definition 3. Let pP, Iq be a pair of binary relations on X that satisfies trichotomy. We

define the following binary relations on X: For each x, y P X,

• x R y if  py P xq (i.e., x P y or x I y),

• x P0 y if there exists z P X such that x P z R y or x R z P y,

• x R0 y if  py P0 xq,

• x I0 y if x R0 y and y R0 x.

Notation. In the rest of the paper, we refer to a semiorder pP, Iq on X simply as R � P YI.

Now, we present a well-known observation:

Lemma 1. Let R be a semiorder on X. For each x, y, z P X, if x R0 y P z or x P y R0 z,

then x P z.11

Next, we give a slightly modified version of an important result of Luce (1956), which

shows that R0 induced by a semiorder R is always a weak order. That is, every semiorder

induces a natural weak order.

Proposition 1. If R is a semiorder on X, then R0 is a weak order on X.

Since Proposition 1 is well known in the literature (see e.g., Theorem 1 in Luce (1956)),

we omit the proof of Proposition 1.

In the next section, we focus our attention to semiorders under uncertainty.

11For a proof of this observation, see Pirlot and Vincke (1997) or Aleskerov et al. (2007).
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2.2 Semiorders under Uncertainty

From this point on, X � tx1, x2, . . . , xnu denotes a set with n P N alternatives. A lottery

on X is a list p � pp1, p2, . . . , pnq such that
°
pi � 1 and for each i P t1, 2, ..., nu, we have

pi ¥ 0, where pi denotes the probability of xi. We denote the set of all lotteries on X as L.

It is easy to see that for each lottery p, q P L and each α P p0, 1q, we have αp� p1�αqq P L.

In the following, we assume that R is a semiorder on L.12

Since continuity and independence axioms are generally essential for expected utility

representations, we next investigate the continuity and independence in terms of semiorders

and in terms of their associated weak orders.

2.2.1 Continuity

We now analyze the relationship between a semiorder and the weak order induced by

this semiorder in terms of continuity.

Definition 4. A reflexive binary relation R on L is

• continuous if for each q P L, the sets

UCpqq :� tp P L : p R qu and LCpqq :� tp P L : q R pu

are closed (with respect to the standard metric on Rn),

• mixture-continuous if for each p, q, r P L, the sets

UMCpq; p, rq :� tα P r0, 1s : rαp� p1� αqrsR qu

and

LMCpq; p, rq :� tα P r0, 1s : q R rαp� p1� αqrsu

are closed (with respect to the standard metric on R).

The following result presents the relationship between continuity and mixture continuity

for a semiorder:

Lemma 2. If a semiorder R on L is continuous, then it is mixture-continuous.

Proof. Let R be a continuous semiorder on L. Let p, q, r P L, α P R, and let pαnq P

UMCpq; p, rqN be a sequence such that pαnq Ñ α. Clearly, since r0, 1s is closed, α P r0, 1s.

Furthermore, because for each n P N, rαnp � p1 � αnqrs P UCpqq and UCpqq is closed, the

limit rαp � p1 � αqrs P UCpqq. Hence, UMCpq; p, rq is closed. Similarly, one can show that

LMCpq; p, rq is also closed.

12We would like to note that we restrict our attention to the set of objective lotteries over a finite set. This
setting is sometimes referred as the risky-choice setting. We also would like to point out that even though
the set of alternatives, X, is finite, the set of all lotteries over these alternatives, L, is an uncountable set.
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Next, we investigate the relationship between a semiorder R on L and its associated weak

order R0 on L in terms of continuity and mixture-continuity.

The following two examples show that a semiorder, R, and its associated weak order, R0,

are not related in terms of continuity and mixture-continuity. In particular, Example 2 shows

that it is possible for a semiorder R to be continuous when its associated weak order R0 is

not even mixture-continuous. On the other hand, Example 3 shows that it is possible for its

weak order R0 to be continuous even when the semiorder R itself is not mixture-continuous.

Example 2. We provide an example of a continuous semiorder whose associated weak order

is not mixture-continuous.

Define R on r0, 1s as:

• for each p P r0, 1s, p I 0.5,

• for each p, p1 P p0.5, 1s and q, q1 P r0, 0.5q, p I p1, p P q, and q I q1.

It is straightforward to show that R is a semiorder. Moreover, UCp0.5q � LCp0.5q � r0, 1s

and for each p P p0.5, 1s, q P r0, 0.5q, we have UCppq � r0.5, 1s, LCppq � r0, 1s, UCpqq � r0, 1s,

LCpqq � r0, 0.5s. Thus, R is continuous.

0 0.5 p 1

Figure 2: Example 2

Gray segment shows UCppq � UCp1q � r0.5, 1s.

Finally, let p, p1 P p0.5, 1s, q P r0, 0.5q. Since p P q, p P0 q. Also p I0 p
1. Moreover, because

p P q I 0.5, we have p P0 0.5. So,

UMC 0p1; 1, 0q :� tα P r0, 1s : rα1� p1� αq0sR0 1u � p0.5, 1s,

which is not closed. Therefore, R0 is not mixture-continuous.

0 0.5 1

Figure 3: Example 2

Gray segment shows UMC0p1; 1, 0q � p0.5, 1s.

Example 3. We next provide an example of a semiorder whose associated weak order is

continuous but the semiorder itself is not mixture-continuous.

Let L be the set of lotteries on X :� tx1, x2, x3u and ε P p0, 0.5s. We define R on L as

follows: For each p � pp1, p2, p3q, q � pq1, q2, q3q P L,

11



• p P q if p1 ¥ q1 � ε,

• p I q if |p1 � q1|   ε.

1

32

pε
ε

Figure 4: Example 3

We have indifference between p and every lottery in the gray area.

It is easy to see that R is a semiorder on L. Moreover, for each p, q P L, p R0 q if and

only if p1 ¥ q1. An immediate corollary is that R0 is continuous.

On the other hand, it is easy to show that UMCpp1, 0, 0q; p1�ε, ε{2, ε{2q, p1, 0, 0qq � r0, 1q,

which is not closed. Therefore, R is not mixture-continuous.

2.2.2 Independence

Now, we analyze whether the independence axiom is compatible with semiorders repre-

senting intransitive indifference.

Definition 5. A reflexive binary relation R on L satisfies

• independence if for each p, q, r P L and each α P p0, 1q, pP q if and only if rαp�p1�

αqrs P rαq � p1� αqrs,

• midpoint indifference13 if for each p, q, r P L, pI q implies r1{2 p� 1{2 rs I r1{2 q� 1{2 rs.

It is easy to see that, if a semiorder R on L satisfies independence, then it also satisfies

midpoint indifference.

The following result shows that a semiorder satisfying the independence axiom cannot

have intransitive indifference. Therefore, the study of semiorders and that of weak orders

are equivalent under independence.

13This property is introduced by Herstein and Milnor (1953).
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Proposition 2. Let R be a semiorder on L. If R satisfies independence, then I is transi-

tive.14

Proof. Let R be a semiorder on L that satisfies independence. Suppose there are p, q, r P L

such that p I q I r but p P r. Independence and p P r together imply that for each α P p0, 1q,

pP rαp�p1�αqrs and rαp�p1�αqrsP r. Since pP rαp�p1�αqrsP rI q, by semitransitivity,

p P q. This contradicts p I q.

In our main result, we avoid this incompatibility by not imposing independence on the

semiorder itself but rather by imposing midpoint indifference on its associated weak order.

This is along the same lines with Vincke (1980), which can be seen below in Proposition 3.

2.3 Utility Representations

Let R be a binary relation on X. We say u : X Ñ R is a utility representation of R

if for each x, y P X, x P y if and only if upxq ¡ upyq. A standard utility representation that

allows for intransitive indifference is:

Definition 6. Let R be a binary relation on X, u : X Ñ R be a function, and k P R��.

The pair pu, kq is a Scott-Suppes representation of R if for each x, y P X, x P y if and

only if upxq ¡ upyq � k.15

Here k acts as a threshold of utility discrimination, that is, if the absolute value of the

utility difference between two alternatives is less than or equal to k, then it is as if the

decision maker cannot consider these two alternatives to be significantly different from each

other. Equivalently, one can think that for the decision maker to prefer one alternative over

the other, there is a certain utility threshold to be exceeded. If a decision maker’s preferences

can be represented by such a utility function, then the decision maker acts as if his choice

is satisficing when it gives him a utility within k neighborhood of the alternative(s) that

maximize(s) the utility function u : X Ñ R.

A reflexive binary relation R on X is non-trivial if there exist x, y P X such that xP y.

We say x P X is maximal with respect to R if for each y P X, x R y. Similarly, x P X is

minimal with respect to R if for each y P X, y R x. We denote the set of all maximal and

minimal elements of X with respect to R as MR and mR, respectively.

We state two more properties that we employ in our main result:

Definition 7. Let R be a semiorder on X (of arbitrary cardinality) and S � X. We say S

has maximal indifference elements in X with respect to R if for each s P S, there exists

x P X such that s I x and for each y P X, y P0 x implies y P s.
14Fishburn (1968) proves a similar result with a simple sure thing axiom that is implied by independence.
15We note that if pu, kq is a Scott-Suppes representation of R on X, then R is a semiorder. Therefore,

x P y ðñ upxq ¡ upyq � k implies p I q ðñ |upxq � upyq| ¤ k as well.
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Definition 8. Let u : LÑ R be a function. We say that u is linear if for each p, q P L and

each α P r0, 1s, upαp� p1� αqqq � αuppq � p1� αqupqq.

An important result that we use in proving our main theorem is due to Vincke (1980):

Proposition 3. Let pP, Iq be a pair of binary relations on L. Then,

• pP, Iq is a semiorder,

• R0 is mixture-continuous and satisfies midpoint indifference,

• LzMR has maximal indifference elements in L with respect to R

if and only if there exist a linear function u : LÑ R and a non-negative function σ : LÑ R�

such that for each p, q P L, we have

• p P q if and only if uppq ¡ upqq � σpqq,

• p I q if and only if uppq � σppq ¥ upqq and upqq � σpqq ¥ uppq,

• p I0 q if and only if uppq � upqq,

• uppq ¡ upqq implies uppq � σppq ¥ upqq � σpqq,

• uppq � upqq implies σppq � σpqq.

Proof. See Vincke (1980).

3 Expected Scott-Suppes Utility Representation

Before moving on with our main result, we introduce two more axioms that we employ

in our main theorem:

Definition 9. A reflexive binary relation R on L is regular if there are no p, q P L and no

sequences ppnq, pqnq P L
N such that for each n P N, we have p P pn and pn�1 P pn or for each

n P N, we have qn P q and qn P qn�1.

The regularity axiom also appears in Manders (1981), Beja and Gilboa (1992), and

Candeal and Induráin (2010) in connection with Scott-Suppes representations. In words, a

binary relation is regular if its asymmetric part has no infinite up or down chains with an

upper or lower bound, respectively.

Definition 10. A reflexive binary relation R on L is mixture-symmetric if for each p, q P L

and each α P r0, 1s, p I rαp� p1� αqqs implies q I rαq � p1� αqps.

This axiom is introduced by Nakamura (1988) to obtain a constant threshold for an

expected utility representation for interval orders. Our main result implies that it is essential

to obtain a constant threshold for semiorders in our setup as well.
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3.1 The Main Result

We are now ready to state and prove our main result.

Theorem 1 (Expected Scott-Suppes Utility Representation). Let R be a non-trivial semiorder

on L. Then,

• R is regular and mixture-symmetric,

• R0 is mixture-continuous and satisfies midpoint indifference, and

• LzMR has maximal indifference elements in L with respect to R

if and only if there exist a linear function u : L Ñ R and k P R�� such that pu, kq is a

Scott-Suppes representation of R, i.e., for each p, q P L we have

p P q ðñ uppq ¡ upqq � k,

p I q ðñ |uppq � upqq| ¤ k.

We call such a representation an expected Scott-Suppes utility representation.16

Proof. ( ùñ ) We first show that the axioms imply the existence of an expected Scott-Suppes

utility representation.

Since all of the hypotheses of Proposition 3 are satisfied, there is a linear function u :

LÑ R and a non-negative function σ : LÑ R� such that for each p, q P L, we have:

(i) p P q if and only if uppq ¡ upqq � σpqq,

(ii) p I q if and only if uppq � σppq ¥ upqq and upqq � σpqq ¥ uppq,

(iii) p I0 q if and only if uppq � upqq,

(iv) uppq ¡ upqq implies uppq � σppq ¥ upqq � σpqq,

(v) uppq � upqq implies σppq � σpqq.

Moreover, it is straightforward to show that:17

(vi) p R0 q if and only if uppq ¥ upqq,

16We remark that our main result is an expected Scott-Suppes utility representation in the following sense:
Since u is linear, when one considers the restriction of u on the set of alternatives X, let us call it uX , we
have uppq � EpuX , pq. Therefore, uppq ¡ upqq � k ðñ EpuX , pq ¡ EpuX , qq � k and |uppq � upqq| ¤ k ðñ
|EpuX , pq � EpuX , qq| ¤ k.

17Vincke (1980) applies Herstein and Milnor (1953)’s utility representation theorem to R0 and obtains
the linear function u : L Ñ R. Since R0 is a weak order and satisfies mixture continuity and midpoint
indifference, it follows directly from Herstein and Milnor (1953)’s representation theorem that (vi) and (vii)
hold.
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(vii) p P0 q if and only if uppq ¡ upqq.

Our initial aim is to show that for each p, q P LzMR, σppq � σpqq ¡ 0. Since R is

non-trivial, the set of all non-maximal elements of X with respect to R is non-empty.

• Claim 1: For each p P LzMR, σppq ¡ 0.

We provide a proof by contradiction, which can be outlined as follows. First, we show

that if σppq � 0 for some non-maximal p P LzMR, then qP p implies for each α P p0, 1q,

σpαp � p1 � αqqq � 0. Next, we show that this contradicts regularity. Therefore, it

must be the case that σppq ¡ 0.

Suppose, on the contrary, that there is a p P LzMR such that σppq � 0. Since p is

non-maximal, there exists q P L such that q P p. Therefore, upqq ¡ uppq. Because u is

linear, this implies for each α P p0, 1q, upqq ¡ upαp � p1 � αqqq ¡ uppq. Furthermore,

since σppq � 0, we have uppq � σppq � uppq   upαp� p1� αqqq, which implies, by (i),

for each α P p0, 1q,

rαp� p1� αqqs P p. (�)

This implies that for each α P p0, 1q, σpαp� p1� αqqq � 0. To see why, suppose there

is an α̃ P p0, 1q such that σpα̃p� p1� α̃qqq ¡ 0. We have two cases:

Case 1: upα̃p� p1� α̃qqq � σpα̃p� p1� α̃qqq ¥ upqq.

Since upqq ¡ uppq and σpqq ¥ 0, we have upqq � σpqq ¡ uppq. This together with

upα̃p�p1� α̃qqq�σpα̃p�p1� α̃qqq ¥ upqq imply, by (ii), q I rα̃p�p1� α̃qqs. Therefore,

mixture symmetry implies p I rα̃q � p1� α̃qps. By (�), this contradicts trichotomy.

Case 2: upα̃p� p1� α̃qqq � σpα̃p� p1� α̃qqq   upqq.

Since u is linear, α̃uppq�p1�α̃qupqq�σpα̃p�p1�α̃qqq   upqq. Hence, α̃ ¡ σpα̃p�p1�α̃qqq
upqq�uppq

¡

0. Define β P p0, α̃q as follows:

β :� α̃ �
σpα̃p� p1� α̃qqq

upqq � uppq
.

By construction, the linearity of u implies

upβp� p1� βqqq � uppα̃ �
σpα̃p� p1� α̃qqq

upqq � uppq
qp� p1� pα̃ �

σpα̃p� p1� α̃qqq

upqq � uppq
qqqq

� rα̃uppq � p1� α̃qupqqs �
σpα̃p� p1� α̃qqq

upqq � uppq
rupqq � uppqs

� upα̃p� p1� α̃qqq � σpα̃p� p1� α̃qqq.

Since σpβp � p1 � βqqq ¥ 0, we have both upβp � p1 � βqqq � σpβp � p1 � βqqq ¥

upα̃p � p1 � α̃qqq and upα̃p � p1 � α̃qqq � σpα̃p � p1 � α̃qqq ¥ upβp � p1 � βqqq.
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Thus, by (ii), rα̃p � p1 � α̃qqs I rβp � p1 � βqqs. Moreover, since rβp � p1 � βqqs �

rpβ
α̃
qpα̃p�p1� α̃qqq�p α̃�β

α̃
qqs, we get rα̃p�p1� α̃qqsI rpβ

α̃
qpα̃p�p1� α̃qqq�p α̃�β

α̃
qqs. So,

mixture symmetry implies q I rpβ
α̃
qq�p α̃�β

α̃
qpα̃p�p1� α̃qqqqs � rp1�β� α̃qq�pα̃�βqps.

Once again, mixture symmetry implies p I rp1 � β � α̃qp � pα̃ � βqqs. By (�), this

contradicts trichotomy.

6 If p P LzMR, q P L are such that σppq � 0 and q P p, then for each α P p0, 1q we

have σpαp� p1� αqqq � 0.

Next, for each n P N, let αn � 1{pn�2q. Because, for each α P p0, 1q, σpαp�p1�αqqq �

0, we have q P � � �P rαn�1p�p1�αn�1qqsP rαnp�p1�αnqqsP � � �P rα1p�p1�α1qqs.

This contradicts regularity.

Therefore, for each p P LzMR, we have σppq ¡ 0.

Next, we provide three results that we use in proving our next claim.

Lemma 3. For each p, r, s P L, if r P p and upsq � uprq � σppq, then r I s.

Proof. If r P p, by (i), uprq ¡ uppq � σppq. Therefore, 0   σppq
ruprq�uppqs

  1. Define γ P p0, 1q as

follows:

γ :� 1�
σppq

uprq � uppq
.

Then, by construction, and since u is linear, upγp � p1 � γqrq � uppq � σppq. Hence,

p I rγp � p1 � γqrs. By mixture symmetry, r I rγr � p1 � γqps. Moreover, by definition,

σppq � p1�γqruprq�uppqs. Let s P L be such that upsq � uprq�σppq. Then, by linearity of

u, upsq � upγr � p1� γqpq. Thus, by (v), we also have σpsq � σpγr � p1� γqpq. Therefore,

r I s.

Lemma 4. For each p, q, r, t P L, if r P q P0 p, upqq ¤ uprq � σppq, and uptq � upqq � σppq,

then q I t.

Proof. If r P q P0 p, by Lemma 1, r P p. This implies uprq ¡ uppq � σppq. Since L is convex

and u is linear, there is a δ P r0, 1s such that s � rδr � p1 � δqqs with upsq � uprq � σppq.

Thus, by Lemma 3, rI s. That is, rI rδr�p1�δqqs. By mixture symmetry, q I rδq�p1�δqrs.

Furthermore, since upsq � uprq�σppq, we have σppq � p1�δqruprq�upqqs. Let t P L such that

uptq � upqq � σppq. This implies, by linearity, uptq � δupqq � p1� δquprq � upδq� p1� δqrq.

Hence, by (v), we also have σptq � σpδq � p1� δqrq. Therefore, q I t.

Lemma 5. For each p, q, r P L, if r P q P0 p and upqq ¤ uprq � σppq, then σpqq ¥ σppq.

Proof. By convexity of L and linearity of u, there is a t P L such that uptq � upqq � σppq.

Hence, by Lemma 4, q I t. Thus, by (ii), upqq � σpqq ¥ uptq. Therefore, σpqq ¥ σppq.
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• Claim 2: For each p, q P LzMR, σppq � σpqq.

Suppose, on the contrary, that there are p, q P LzMR such that σppq � σpqq. By (v),

uppq � upqq implies σppq � σpqq and, by (iii), p I0 q if and only if uppq � upqq. Hence,

 pp I0 qq. Thus, p P0 q or q P0 p. Without loss of generality, suppose q P0 p. By (vii),

upqq ¡ uppq. Moreover, since q is non-maximal, there is an r P L such that r P q. This

implies r P q P0 p. We have two cases:

Case 1: upqq ¤ uprq � σppq. Then, by Lemma 5, σpqq ¥ σppq. Since σpqq � σppq, we

have σpqq ¡ σppq. Since L is convex and u is linear, there is an η P r0, 1s such that

s � rηr�p1� ηqqs with upsq � uprq�σpqq. Because r P q, by Lemma 3, r I s. That is,

rI rηr�p1�ηqqs. Hence, by mixture symmetry, pI rηp�p1�ηqrs. Then, by (ii), we have

uppq � σppq ¥ upηp� p1� ηqrq. This means, by linearity, σppq ¥ p1� ηqruprq � uppqs.

But, upηr�p1�ηqpq � uprq�σpqq, which implies p1�ηqruprq�uppqs � σpqq. Therefore,

σppq ¥ σpqq, which contradicts σpqq ¡ σppq.

Case 2: upqq ¡ uprq � σppq. Now, let s P L be such that upsq � uprq � σppq. Then,

upqq ¡ upsq, which implies, by (vi), q P0 s. Hence, r P q P0 s. Thus, by Lemma 1, r P s.

But, by Lemma 3, we also have r I s. This contradicts trichotomy.

6 For each p, q P LzMR, we have σppq � σpqq.

Now, for each p P LzMR, let k :� σppq ¡ 0. Since u is linear (and hence continuous)

and L is compact, there are
¯
p, r̄ P L such that for each q P L, upr̄q ¥ upqq and upqq ¥ up

¯
pq.

Clearly, σp
¯
pq � k. If r P MR, then for each q P L, uprq � σprq ¥ upqq. Therefore, if for

each r P MR, upr̄q � uprq ¤ k, then for each r P MR, replacing σprq with k yields pu, kq as

a Scott-Suppes representation of R. We now complete our proof by showing that this is,

indeed, the case.

• Claim 3: For each r PMR, upr̄q � uprq ¤ k.

Suppose, on the contrary, that there exists r1 P MR such that upr̄q � upr1q ¡ k. Since

upr1q � σpr1q ¥ upr̄q, by (ii), r̄ I r1. Moreover, since upr̄q ¥ upr1q ¡ up
¯
pq, by linearity of

u, there is a λ P r0, 1s such that upr1q � λupr̄q�p1�λqup
¯
pq � upλr̄�p1�λq

¯
pq. Then, by

(v), we have r̄ I rλr̄� p1� λq
¯
ps. Hence, mixture symmetry implies

¯
p I rλ

¯
p� p1� λqr̄s.

This implies, by (ii), up
¯
pq � k ¥ upλ

¯
p � p1 � λqr̄q. Thus, by linearity of u, k ¥

p1 � λqrupr̄q � up
¯
pqs. But, since upr̄q � upr1q ¡ k and upr1q � upλr̄ � p1 � λq

¯
pq, by

linearity of u, p1� λqrupr̄q � up
¯
pqs ¡ k, a contradiction.

( ðù ) Next, we show that the expected Scott-Suppes utility representation implies our

axioms.
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Suppose there exists a linear function u : LÑ R and k P R�� such that pu, kq is a Scott-

Suppes representation of R. It is well known that if a binary relation has a Scott-Suppes

representation, then this binary relation is a regular semiorder (see e.g., Beja and Gilboa

(1992)). Therefore, R is a semiorder and R is regular.

Let p, q P L and α P p0, 1q. Suppose p I rαp� p1�αqqs. This implies |uppq � upαp� p1�

αqqq| ¤ k. Since u is linear, |uppq � rαuppq � p1�αqupqqs| ¤ k. Rearranging the terms gives

|rαupqq�p1�αquppqs�upqq| ¤ k. Hence, q I rαq�p1�αqps. Thus, R is mixture-symmetric.

It is easy to show that for each p, q P L, p R0 q if and only if uppq ¥ upqq. Since u is a

continuous function, the preimage of a closed set is closed. Hence, R0 is continuous. This

implies that R0 is mixture-continuous.

Let p, q P L with p I0 q. This implies uppq � upqq. Hence, for each r P L, 1{2uppq �

1{2uprq � 1{2upqq � 1{2uprq. The linearity of u implies up1{2 p� 1{2 rq � up1{2 q � 1{2 rq. Thus,

r1{2 p� 1{2 rs I0 r1{2 q � 1{2 rs. So, R0 satisfies midpoint indifference.

Finally, suppose p P LzMR. This implies that there is an r P L such that r P p. Hence,

uprq ¡ uppq � k. Thus, by linearity of u, there is a q P L such that upqq � uppq � k. So,

p I q. Moreover, if for some s P L, sP0 q, then upsq ¡ uppq�k. This implies sP p. Therefore,

LzMR has maximal indifference elements in L with respect to R.

3.2 Uniqueness

Next, we note that the expected Scott-Suppes utility representation is unique up to affine

transformations:

Proposition 4. If pu, kq and pv, lq are two expected Scott-Suppes utility representations of

a non-trivial semiorder R on L, then there exist α P R��, β P R such that for each p P L,

vppq � αuppq � β. Furthermore, l � αk.

Proof. Let pu, kq and pv, lq be two expected Scott-Suppes utility representations of a non-

trivial semiorder R. Then, by Proposition 1 and Theorem 1, R0 is a weak order that

satisfies mixture continuity and midpoint indifference. It follows from Herstein and Milnor

(1953) and Vincke (1980) that u and v are expected utility representations of the weak order

R0 induced by the semiorder R. Since expected utility representations of weak orders are

unique up to affine transformations, there exist α P R��, β P R such that for each p P L,

vppq � αuppq � β.

Next, we show that l � αk, by contradiction. Suppose l   αk. Since R is a non-

trivial semiorder there exist p, q P L with p P q. Since u is continuous, by the intermediate

value theorem, there exists an γ P p0, 1q such that upγp � p1 � γqqq � upqq � k. This with

pu, kq being an expected Scott-Suppes utility representation of R imply rγp� p1� γqqs I q.

Moreover, because for each p P L, vppq � αuppq � β, we have vpγp� p1� γqqq � vpqq � αk.
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This together with pv, lq being an expected Scott-Suppes utility representation of R and

l   αk imply rγp� p1� γqqs P q, a contradiction. By a similar argument, one can obtain a

contradiction for l ¡ αk as well.

3.3 Independence of the Axioms

Let R be a non-trivial semiorder on L. Consider the following axioms:

• R is regular (reg),

• R is mixture-symmetric (mix-sym),

• R0 is mixture-continuous (mix-cont),

• R0 satisfies midpoint indifference (mid indiff),

• LzMR has maximal indifference elements in L with respect to R (max indiff).

First, we present an example that shows that the axioms listed above are compatible,

i.e., in the example below, they all hold simultaneously:

Example 4. Let L be the set of lotteries on X :� tx1, x2, x3u, p, q P L, and ε P p0, 0.5s. We

define R on L such that:

• p P q if p1 ¡ q1 � ε,

• p I q if |p1 � q1| ¤ ε.

1

32

pε
ε

Figure 5: Example 4

We have indifference between p and every lottery in the gray area.

It is easy to see that pu, εq is a Scott-Suppes representation of R where u : L Ñ R is

defined as uppq :� p1. Therefore, R is a non-trivial semiorder.

Reg. R is regular since pu, εq is a Scott-Suppes representation of R with ε ¡ 0.
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Mix-sym. Let p, q P L and α P p0, 1q. Suppose p I rαp� p1� αqqs. This implies

|p1 � αp1 � q1 � αq1| ¤ ε.

Rearranging the terms gives |αq1 � p1� αqp1 � q1| ¤ ε. Hence, q I rαq � p1� αqps. Thus, R

is mixture-symmetric.

Mix-cont. It is easy to see that for each p, q P L, p R0 q if and only if p1 ¥ q1. Hence, R0

is continuous, which implies that it is mixture-continuous.

Mid indiff. Let r P L. Suppose for some p, q P L, p I0 q. Because for each p, q P L,

p I0 q if and only if p1 � q1, we have p1 � q1. Hence, 1{2 p1 � 1{2 r1 � 1{2 q1 � 1{2 r1. Thus,

r1{2 p� 1{2 rs I0 r1{2 q � 1{2 rs.

Max indiff. Let p P LzMR. This implies 0   p1   1� ε. Define p1 � pp1� ε, 1�pp1� εq, 0q.

Since 1 ¡ p1 � ε ¡ 0, p1 P L. Moreover, p I p1. Let q P L. Suppose q P0 p
1. Because for each

q P L, q P0 p
1 if and only if q1 ¡ p11, we have q1 ¡ p1 � ε. Hence, q P p.

Now, we show that the axioms in our main result (Theorem 1) are mutually independent

by providing an example for each axiom.

Example 5 (Reg, Mix-sym, Mix-cont, Mid indiff ÷ Max indiff). Let L be the set of

lotteries on X :� tx1, x2, x3u, p, q P L, and ε P p0, 0.5s. We define R on L such that:

• p P q if p1 ¥ q1 � ε,

• p I q if |p1 � q1|   ε.

Since ε P p0, 1q, R is non-trivial. In Example 3 we show that R is a semiorder.

Reg. Since ε ¡ 0, it is straightforward to show that R is regular.

Mix-sym. Let p, q P L and α P p0, 1q. Suppose p I rαp� p1� αqqs. This implies

|p1 � αp1 � q1 � αq1|   ε.

Rearranging the terms gives

|αq1 � p1� αqp1 � q1|   ε.

Hence, q I rαq � p1� αqps.

Mix-cont. In Example 3, we also show that R0 is continuous, and hence R0 is mixture-

continuous.

Mid indiff. It is easy to show that for each p, q P L, p I0 q if and only if p1 � q1. Let r P L.

Suppose for some p, q P L, p I0 q. This implies p1 � q1. Hence,

1{2 p1 � 1{2 r1 � 1{2 q1 � 1{2 r1,
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which implies

r1{2 p� 1{2 rs I0 r1{2 q � 1{2 rs.

Max indiff. Let p � p0, 0, 1q. Since p1, 0, 0q P p, p P LzMR. Take p1 I p, then p11   ε. Let

q � prp11 � εs{2, 1 � rp11 � εs{2, 0q. It is easy to see that q P0 p
1 but p I q. Thus, LzMR does

not have maximal indifference elements in L with respect to R.

Example 6 (Reg, Mix-sym, Mix-cont, Max indiff ÷ Mid indiff). Let L be the set of

lotteries on X :� tx1, x2u and p, q P L. We define R on L such that:

• p P q if p1 ¡ q1 � 0.6,

• p I q if |p1 � q1| ¤ 0.6.

It is similar to Example 4 to show that R is a non-trivial semiorder.

Reg, Mix-sym, Max indiff. Showing that these axioms hold is also similar to Example 4.

Mix-cont, Mid indiff. However, unlike Example 4, for each p, q P L, we neither have pR0 q

if and only if p1 ¥ q1 nor p I0 q if and only if p1 � q1. This is because for each p, q P L, if

p1, q1 P r0.4, 0.6s, then p I0 q. On the other hand, for each p, q P L, if p1 P r0, 0.4q Y p0.6, 1s

and q1 P r0, 1s, then still pR0 q if and only if p1 ¥ q1, and p I0 q if and only if p1 � q1. Hence,

it is straightforward to see that R0 is mixture-continuous. Moreover, p0.6, 0.4q I0 p0.4, 0.6q

but

1{2 p0.6, 0.4q � 1{2 p1, 0q � p0.8, 0.2q P0 p0.7, 0.3q � 1{2 p0.4, 0.6q � 1{2 p1, 0q.

This is because if p1 P r0, 0.4q Y p0.6, 1s, then p P0 q if and only if p1 ¡ q1. Thus, R0 does

not satisfy midpoint indifference.

Example 7 (Reg, Mix-sym, Mid indiff, Max indiff ÷ Mix-cont). Let L be the set of

lotteries on X :� tx1, x2u and p, q P L. We define R on L such that:

• p P q if p1 � 1 and q1 � 0,

• p I q if  pp P qq and  pq P pq.

Since p1, 0q P p0, 1q, R is non-trivial. Moreover, it is straightforward to show that R is

reflexive and satisfies trichotomy. Because the only strict preference is p1, 0q P p0, 1q, there

are no p, q, r, s P L such that p P q I r P s or p P q P r I s. Therefore, R vacuously satisfies

strong intervality and semitransitivity. Hence, R is a semiorder.

Reg. Since the only strict preference is p1, 0q P p0, 1q, R is trivially regular.

Mix-sym. Let p P L. Suppose p1 P p0, 1q. Then, for each q P L, p I q. Moreover, for each

α P p0, 1q,

p0, 1q I rαp0, 1q � p1� αqp1, 0qs I p1, 0q.
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Hence, R is mixture-symmetric.

Mid indiff. For each p P Lztp1, 0q, p0, 1qu, we have p1, 0q P0 p P0 p0, 1q. Furthermore, for

each p, q P Lztp1, 0q, p0, 1qu, we have p I0 q. Therefore, R0 satisfies midpoint indifference.

Max indiff. Since the only strict preference is p1, 0q P p0, 1q, LzMR � tp0, 1qu. Moreover,

p0.5, 0.5q P0 r only if r � p0, 1q. Hence, p1, 0q P0 p0.5, 0.5q and p1, 0q P p0, 1q together imply

that LzMR has maximal indifference elements in L with respect to R.

Mix-cont. UMC0pp0.5, 0.5q; p0, 1q, p1, 0qq :�

tα P r0, 1s : rαp0, 1q � p1� αqp1, 0qsR0 p0.5, 0.5qu � r0, 1q,

which is not closed. Therefore, R0 is not mixture-continuous.

Example 8 (Reg, Mix-cont, Mid indiff, Max indiff ÷ Mix-sym). Let L be the set of

lotteries on X :� tx1, x2u and p, q P L. We define R on L such that:

• p P q if 2p1 ¡ 3q1 � 0.5,

• p I q if |2p1 � 3q1| ¤ 0.5.

Since p1, 0q P p0, 1q, R is non-trivial. Let p P L. Define u : LÑ R as uppq � lnpp1 � 0.5q. It

is straightforward to show that pu, lnp3{2qq is a Scott-Suppes representation of R. Hence, R

is a semiorder

Reg. Since R has a Scott-Suppes representation, it is regular.

Mix-cont. It is straightforward to show that for each p, q P L, pR0 q if and only if p1 ¥ q1.

Hence, R0 is continuous, which implies that it is mixture-continuous.

Mid indiff. It is also easy to see that for each p, q P L, p I0 q if and only if p1 � q1. Let

r P L. Suppose that for some p, q P L, p I0 q. This implies p1 � q1. Hence,

1{2 p1 � 1{2 r1 � 1{2 q1 � 1{2 r1.

Thus,

r1{2 p� 1{2 rs I0 r1{2 q � 1{2 rs.

Max indiff. Let p P LzMR. This implies p1   1{2. Define

p1 � pp6p1 � 1q{4, 1� rp6p1 � 1q{4sq.

Because 1{2 ¡ p1 ¥ 0, p1 P L. Furthermore, p I p1. Since for each q P L, q P0 p
1 if and only if

q1 ¡ p11, we have q P p. Hence, LzMR has maximal indifference elements in L with respect

to R.

Mix-sym. We have p1, 0q I p0.5, 0.5q � 1{2p1, 0q � 1{2p0, 1q. But,  pp0, 1q I r1{2p0, 1q �

1{2p1, 0qsq. Hence, R0 is not mixture-symmetric.
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Example 9. [Mix-sym, Mix-cont, Mid indiff, Max indiff÷ Reg] Let L be the set of lotteries

on X :� tx1, x2u and p, q P L. We define R on L such that:

• p P q if p1 ¡ q1,

• p I q if p1 � q1.

Since p1, 0qP p0, 1q, R is non-trivial. Moreover, because R is a weak order, it is a semiorder.

Mix-sym. Let p, q P L and α P p0, 1q. If p I rαp � p1 � αqqs, then p1 � αp1 � p1 � αqq1.

This implies q1 � αq1 � p1� αqp1. Hence, q I rαq � p1� αqps.

Mix-cont. It is straightforward to show that for each p, q P L, p R q if and only if p R0 q

if and only if p1 ¥ q1. Hence, R0 is continuous, which implies that it is mixture-continuous.

Mid indiff. It is also easy to show that for each p, q P L, p I q if and only if p I0 q if and

only if p1 � q1. Let r P L. Suppose for some p, q P L, p I0 q. This implies p1 � q1. Hence,

1{2 p1 � 1{2 r1 � 1{2 q1 � 1{2 r1. Thus, r1{2 p� 1{2 rs I0 r1{2 q � 1{2 rs.

Max Indiff. Let p P LzMR. This implies p1   1. Moreover, p I p1 only if p � p1. Let q P L.

Suppose q P0 p. Since for each q P L, q P0 p if and only if q P p if and only if q1 ¡ p1, we have

q P p. Hence, LzMR has maximal indifference elements in L with respect to R.

Reg. Take pn � p n
n�1

, 1
n�1
q. It follows that for each n P N, we have p1, 0q P pn and

pn�1 P pn. Hence, R is not regular.

4 On Epsilon Equilibrium

Next, we consider the relationship between the expected Scott-Suppes utility represen-

tation and the concept of epsilon equilibrium.

Let N be a set of players, Ai be the set of actions available to player i P N , and Ri

be the reflexive binary relation that represents the preferences of player i P N over the set

of lotteries on the set of action profiles. We denote the set of all (pure) action profiles as

A :� �iPNAi and the set of all lotteries on A as ∆pAq. That is, xN, pAiqiPN , pRiqiPNy is a

normal form game.

A (possibly) mixed action profile is an equilibrium if no player has a unilateral deviation

that makes him strictly better off. This translates into the following definition:

Definition 11. A (possibly mixed) action profile σ� � pσ�
i , σ

�
�iq P ∆pAq is an equilibrium

of xN, pAiqiPN , pRiqiPNy if for each i P N , there does not exist ai P Ai such that

pai, σ
�
�iq Pi σ

�.

Suppose now that the reflexive binary relation representing the preferences of each agent

i P N , Ri, is a non-trivial semiorder that satisfies the axioms of our representation theorem.
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Then, by our main result, Ri has an expected Scott-Suppes utility representation pui, kiq.

That is, there is a linear utility function ui : ∆pAq Ñ R and k P R�� such that for each

p, q P ∆pAq, we have p Pi q if and only if uippq ¡ uipqq � ki. Hence, the definition of an

equilibrium, under our axioms, is equivalent to:

Definition 12. A (possibly mixed) action profile σ� � pσ�
i , σ

�
�iq P ∆pAq is an equilibrium

of xN, pAiqiPN , pRiqiPNy if for each i P N , there does not exist ai P Ai such that

uippai, σ
�
�iqq ¡ uipσ

�q � ki.

Observe that if pu, kq is an expected Scott-Suppes utility representation of a semiorder R

on L, then for each α P R�� and β P R, we have pαu�β, αkq is also an expected Scott-Suppes

utility representation of R. Now, fix an ε ¡ 0. For each i P N , let γi �
ε
ki

and vi : ∆pAq Ñ R
be defined as, for each p P ∆pAq, vippq :� γiuippq. Thus, pvi, εq is another expected Scott-

Suppes utility representation of Ri. Therefore, the definition of an equilibrium, under the

expected Scott-Suppes utility representation, becomes:

Definition 13. A (possibly mixed) action profile σ� � pσ�
i , σ

�
�iq P ∆pAq is an equilibrium

of xN, pAiqiPN , pRiqiPNy if for each i P N and for each ai P Ai, we have

vipσ
�q ¥ vippai, σ

�
�iqq � ε.

We would like to point out that the epsilon in the above definition is the same for each

player. We are able to obtain such a fixed epsilon by rescaling the linear utility functions

obtained through our expected Scott-Suppes utility representation theorem for each player

i P N .18

Moreover, this is the same definition given by Radner (1980) for epsilon equilibrium.

Therefore, our representation theorem provides a reinterpretation of the concept of epsilon

equilibrium:

In most of the applications, economists construct preferences of agents after observing

their choice behavior. The reason why preferences are constructed as weak orders is mainly

due to tractability, i.e., to have measurable utility functions. However, it is possible that

the underlying preferences exhibit intransitive indifference and because of missing choice

data (and due to the weak order convention), we might observe outcomes that look like

18Argenziano and Gilboa (2017) points out that the utility functions that represent semiorders carry a
cardinal meaning, and hence just noticeable differences provide a common unit of measure for interpersonal
comparisons of utility differences. Whether we are able to make interpersonal utility comparisons between
players by rescaling for each player i P N the constant ki in our expected Scott-Suppes utility representation
is an interesting question. We are moot on this question since the welfare implications of just noticeable
differences are not as clear under uncertainty.
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an epsilon equilibrium. It might also be the case that the revealed preferences of agents

look like a weak order over deterministic outcomes. But, this does not have to be the case

for lotteries over these outcomes – especially when respective probabilities are close to each

other.19 Whatever the underlying reason, our representation highlights a decision-theoretical

foundation for why we might observe outcomes that look like an epsilon equilibrium.

5 Conclusion

In this paper, we study intransitive indifference under uncertainty. In particular, we

identify necessary and sufficient conditions for a semiorder over the set of lotteries to have

a Scott-Suppes representation via a linear utility function. Our main result (Theorem 1)

employs all of the axioms in Vincke (1980). On top of these axioms, we employ two more

axioms, one introduced by Nakamura (1988), and another well-known axiom in the litera-

ture (Manders, 1981; Beja & Gilboa, 1992; Candeal & Induráin, 2010). These two additional

axioms help us convert the non-negative threshold function of Vincke (1980)’s representa-

tion into a positive constant threshold, which leads to our expected Scott-Suppes utility

representation. Moreover, we show that all of these axioms are compatible and mutually

independent.

Our representation theorem is the natural analog of the expected utility theorem of von

Neumann and Morgenstern (1944) for semiorders in the sense that the utility function we

obtain is linear. Yet, unlike in their theorem, in order for two lotteries to be distinguishable,

the difference in utilities of these two lotteries must exceed a constant positive threshold.

We believe that our representation is plausible for the following reasons: (i) Given any

two lotteries, if the corresponding probabilities of alternatives occurring are significantly

close to each other, then the decision maker may not be able to think of these lotteries to be

different from each other. One can convert a lottery bit by bit to another lottery by increasing

and decreasing probabilities in small steps. Furthermore, we can do this for every lottery,

irrespective of the particular goods in the set of alternatives. On top of this, considering

perceptional abilities of agents and the evidence for intransitivity of preferences make it

reasonable to assume that decision makers have thick indifference curves under uncertainty.

(ii) Our representation provides a linear utility function and a positive constant threshold,

which makes possible applications analytically tractable. (iii) As pointed out by Argenziano

and Gilboa (2017) utility functions that represent semiorders carry a cardinal meaning, and

hence an expected utility representation seems more reasonable with semiorders than weak

orders. (iv) Finally, our representation provides a decision-theoretical interpretation for

19Another reason why we observe epsilon equilibrium might be due to learning as in Kalai and Lehrer
(1993).
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epsilon equilibrium. It is possible that the reason why we observe outcomes that look like an

epsilon equilibrium is due to the convention of representing preferences as weak orders, i.e.,

to have measurable utility for tractability purposes. Our representation theorem provides

another reasonably tractable way of having measurable utility that allows for intransitive

indifference under uncertainty.
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