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Abstract

This paper investigates full implementation under complete information, incorporating
fairness considerations when designing mechanisms. In particular, we propose two notions
of full implementation: anonymous implementation and no-envy implementation. Anony-
mous implementation requires that for any state, all socially optimal alternatives are attainable
via a Nash equilibrium (NE) offering identical opportunity sets to all individuals, and that any
such NE is itself socially optimal. No-envy implementation requires socially optimal alter-
natives to be achievable via NE, adding the condition that each individual weakly prefers the
socially desirable alternative to any alternative in others’ opportunity sets. We identify neces-
sary and (almost) sufficient conditions for both anonymous and no-envy implementation. We
also demonstrate the existence of social choice rules that are anonymously and no-envy im-
plementable but not implementable in NE, revealing that fairness considerations may enlarge
the set of implementable social choice rules. Finally, we establish the equivalence of anony-
mous and no-envy implementation in rational environments with at least three individuals and
no-veto social goals, but show that this equivalence fails in behavioral environments.
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1 Introduction

Implementation of collective goals in Nash equilibrium (NE) involves designing mechanisms

that incentivize society members to choose outcomes aligned with the desired goal.1 The seminal

works Maskin (1999)[circulated since 1977], Hurwicz (1986), Saijo (1988), Moore and Repullo

(1990), Dutta and Sen (1991), Korpela (2012), and de Clippel (2014) establish that designing

mechanisms that provide incentives aligned with the collective goal involves the identification of

choice sets corresponding to opportunities individuals can sustain through unilateral deviations

within the mechanism. Nash implementation of collective goals is almost fully characterized by

the existence of a collection of choice sets providing individuals incentives consistent with the

desired goal. Indeed, a consistent collection of sets of alternatives is a family of choice sets in-

dexed for each individual, each state, and each socially optimal alternative at that state such that

the following hold: A socially optimal alternative at a state is chosen by every individual at that

state from the corresponding choice set; if an alternative is socially optimal at the first state but

not at the second, then there is an individual who does not choose this alternative at the second

state from her choice set corresponding to this alternative and the first state. The nearly complete

characterization of Nash implementable collective goals based on consistency reveals that planners

have significant flexibility when designing mechanisms and shaping individuals’ opportunity sets,

sets of alternatives that individuals can sustain through unilateral deviations within the mechanism.

However, in many interesting economic environments, planners often face binding restrictions.2

Given these limitations, we analyze Nash implementation in complete information environ-

ments with the requirement that planners consider fairness when shaping individuals’ opportunity

sets. In particular, we adopt a fairness notion that addresses implementation environments in which

individuals can object to the realized outcome based on non-discrimination concerns. Planners are

restricted to consider only the ex-post fair NE outcomes of mechanisms. The intuition is as follows:

First, only NE behavior at a given state is (strategically) stable (as is standard in implementation

theory); hence, ex-post fairness violations under non-Nash behavior are deemed irrelevant. Sec-

ond, a NE that is not ex-post fair involves justified envy by an individual who strictly prefers an

alternative within the opportunity set of another: At the realized NE, there is an alternative in

the envied individual’s opportunity set that the envying individual ranks strictly higher than the

outcome of the mechanism.
1For more on Nash implementation, please see Maskin and Sjöström (2002), Palfrey (2002), and Serrano (2004).
2These limitations may arise due to legal considerations, such as constitutional rights or gender-neutrality. Also, it

may not be realistic to consider a meeting of trustees of a conglomerate with choice sets exclusively custom-tailored to
each member’s characteristics. These limitations may also arise due to practical considerations, e.g., when the design
of individual specific choice sets and the resulting administration of implementation are complex and costly.
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Consequently, we propose the notion of no-envy implementation: A social choice correspon-

dence (SCC) is no-envy implementable if (i) any socially optimal alternative at any one of the given

states is achievable via a NE at that state with the property that at that state, each individual chooses

that alternative from every individual’s opportunity set, and (ii) any such NE at any one of the states

must be socially optimal at that state.3 A closely related but distinct notion of implementation is

anonymous implementation incorporating anonymity, thereby trivially eliminating justified-envy:

An SCC is anonymous implementable if (i) any socially optimal alternative at any one of the states

is achievable via a NE at that state, with the property that at that NE, all individuals have the same

opportunity set, and (ii) any such NE at any one of the states must be socially optimal at that state.

To see an intuitive example for the applicability of no-envy implementation, consider two fam-

ilies living in the same district and each having a child eligible to go to a public school in that

district. Offering Child A a public school that is ranked strictly higher than all the schools offered

to Family B gives Family B grounds for an appeal based on justified envy.4 On the other hand, to

see an example for the applicability of anonymous implementation, consider a council consisting

of multidisciplinary team of specialized doctors treating a patient.5 In this context, requiring equi-

librium play in the mechanism results in each expert facing the same set of treatment opportunities

seems appealing: Each team member agrees on the treatment method as well as the admissible

options. On the other hand, sustaining a NE with experts facing different sets of treatment options

may create objections and problems within the team.

We establish a necessary and almost sufficient condition for no-envy implementation, and an-

other for anonymous implementation; no-envy consistency and anonymous consistency, respec-

tively. No-envy consistency involves a consistency condition similar to that of de Clippel (2014),

demanding that individuals choose the given alternative from every individual’s choice set. Anony-

mous consistency requires that choice sets are independent of individuals’ identities. We prove

that if an SCC is no-envy (anonymous) implementable, then there exists a collection of choice sets

no-envy (anonymous, respectively) consistent with the desired goal (necessity). We also estab-

lish corresponding sufficiency results. If a no-veto SCC possesses a no-envy consistent profile of

3Given the mechanism and a message profile, each individual is assigned an opportunity set. As the environment is
of complete information, at any given state, individuals anticipate others’ messages and hence the others’ opportunity
sets correctly in equilibrium. No-envy implementation entails the comparison of one’s own opportunity set with that of
others as well as endowing each individual with a veto ability applicable when justified envy arises. So, comparisons
of opportunity sets involves the maximax criterion. We thank an anonymous referee for highlighting these points.

4For tangible examples in public school choice, see Afacan et al. (2017). In the context of the NYC public
school assignments, illustrative examples of objection and appeals can be found (https://www.schools.nyc.gov/school-
life/school-environment/get-help/parent-complaints-and-appeals). The EU consumer protection against discrimina-
tory practices can be reported to the European Consumers Center (https://commission.europa.eu/live-work-travel-
eu/consumer-rights-and-complaints/resolve-your-consumer-complaint/alternative-dispute-resolution-consumers en).

5We thank Atila Abdülkadiroğlu for suggesting this example.
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choice sets, then it is no-envy implementable whenever there are at least three individuals. If an

SCC is unanimous and has an anonymous consistent profile of choice sets, then it is anonymous

implementable whenever there are at least three individuals.

Our results cover both the rational and behavioral environments.

We demonstrate that no-envy and anonymous implementation may expand social goals beyond

those attainable through Nash implementation. In Section 3, we describe a rational environment

and an SCC that is no-envy and anonymous implementable but not Nash implementable. Thus,

fairness considerations may extend the scope of implementable SCCs.

We prove that anonymous implementation and no-envy implementation are equivalent in ra-

tional environments with at least three individuals and SCCs satisfying the no-veto property. This

result offers an explanation as to why anonymous implementation is practical and appealing in

rational environments. Notwithstanding, we establish that this equivalence does not hold in behav-

ioral environments.

Concerning efficiency, we document that no-envy and anonymity impose a heavy burden: We

identify a domain description that results in the Pareto SCC not being no-envy or anonymous

implementable. The full domain of preferences includes this particular instance. Therefore, we

observe that the Pareto SCC is not no-envy or anonymous implementable on the full domain.

We emphasize that addressing fairness concerns by restricting planners to symmetric mecha-

nisms does not necessarily deliver ex-post fair NE, as we display in our main example in Section

3. Another fairness consideration involves ex-post fair mechanisms (Korpela, 2018): Given a mes-

sage profile, such a mechanism provides an opportunity set that is independent of individuals’

identities. In Proposition 1, we establish that ex-post fair mechanisms imply that all of the oppor-

tunity sets of all individuals are identical for every message profile. Therefore, implementation of

an SCC with an ex-post fair mechanism demands the choices of all individuals on that particular

opportunity set be sufficiently aligned with each other.

If institutions responsible for rectifying ex-post fairness violations are absent or weak in their

operational capacity, planners may seek to sustain desirable outcomes through ex-post fair NE but

avoid any NE that does not align with the desired goals. To address this, double implementation,

achieving no-envy (anonymous) implementation and Nash implementation, emerge as appealing

options. In Section 8, we provide necessary and sufficient conditions for double implementation

in economic environments involving at least three individuals, and we analyze its relationship to

no-envy (anonymous) implementation.

The notion of implementation in Gaspart (2003), implementability in NE with Equality of

Attainable Sets is closely related to, yet distinct from anonymous implementation (as demonstrated
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by our examples in Section 3 and Section 8). Another closely related paper is Korpela (2018), a

study analyzing procedural fairness in full implementation. Gavan and Penta (in press) proposes

a new framework for implementation theory by requiring that any individual and group deviations

(up to a fixed size) from the equilibrium must lead to acceptable outcomes, and hence, parallels the

fault-tolerant implementation of Eliaz (2002). Anonymous implementation aligns with the essence

of Gavan and Penta’s approach in that we require unilateral deviations from the equilibrium to

result in the same set of alternatives for every individual.6

The organization of the paper is as follows: Section 2 provides the preliminaries, and Sec-

tion 3 our main example. In Section 4, we analyze the necessity and sufficiency of no-envy and

anonymous implementation, while Section 5 and Section 6 investigates equivalence of no-envy

and anonymous implementation. Section 7 provides our results concerning efficiency, and Section

8 concerning double implementation. Finally, Section 9 presents our concluding remarks.

2 Preliminaries

Let N = {1, ..., n} denote a society with at least two individuals, X a set of alternatives, 2X the

set of all subsets of X, and X the set of all non-empty subsets of X.

We denote by Ω the set of all possible states of the world, capturing all the payoff-relevant

characteristics of the environment. In behavioral environments, the choice correspondence of in-

dividual i ∈ N at state ω ∈ Ω maps 2X to itself so that for all S ∈ 2X, Cωi (S ) is a (possibly empty)

subset of S . In rational environments, every individual’s choice correspondence at every state

satisfies the weak axiom of revealed preferences (WARP) and are represented by preferences of

individual i ∈ N at state ω ∈ Ω captured by a complete and transitive binary relation, a ranking,

Rωi ⊆ X × X, while Pωi represents its strict counterpart.7 In rational environments, for all i ∈ N, all

ω ∈ Ω, and all S ∈ X, Cωi (S ) := {x ∈ S | xRωi y for all y ∈ S }, and Lωi (x) := {y ∈ X | xRωi y} denotes

the lower contour set of individual i at state ω of alternative x.

We refer to any Ω̃ ⊂ Ω as a domain. A social choice correspondence (SCC) defined on a

domain Ω̃ is f : Ω̃ → X, a non-empty valued correspondence mapping Ω̃ into X. Given ω ∈ Ω̃,

f (ω), the set of f -optimal alternatives at ω, consists of alternatives that the planner desires to

6In a related paper, Barlo and Dalkıran (2022b) considers the implementation problem where planners must en-
sure that the mechanism yields desirable outcomes even when they have partial information about individuals’ state-
contingent preferences. Their implementation notion rests on an ex-post approach under incomplete information; see
Barlo and Dalkıran (2023, 2024) for more on implementation under incomplete information.

7It is well-known that a choice correspondence satisfies WARP if and only if it satisfies the independence of
irrelevant alternatives (IIA) and Sen’s β. A choice correspondence C defined on X satisfies the IIA if for all S ,T ∈ X
with S ⊂ T , x ∈ C(T ) ∩ S implies x ∈ C(S ), and Sen’s β if for all S ,T ∈ X with S ⊂ T , x, y ∈ C(S ) implies x ∈ C(T )
if and only if y ∈ C(T ). Further, a binary relation R ⊆ X × X is complete if for all x, y ∈ X either xRy or yRx or both;
transitive if for all x, y, z ∈ X with xRy and yRz implies xRz.
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sustain at ω. SCC f on Ω̃ is unanimous if for any ω ∈ Ω̃, x ∈ ∩i∈NCωi (X) implies x ∈ f (ω). SCC

f on Ω̃ is no-veto if for any ω ∈ Ω̃, for any j ∈ N, x ∈ ∩i∈N\{ j}Cωi (X) implies x ∈ f (ω). We say that

SCC f on Ω̃ is full-range if f (Ω̃) = X.

The environment ⟨N, X,Ω, (Cωi )i∈N, ω∈Ω⟩ is of complete information in the sense that the true

state of the world is common knowledge among the individuals but unknown to the planner as in

Maskin (1999). We say that the environment is economic if for every ω ∈ Ω and x ∈ X, there are

i, j ∈ N with i , j such that x < Cωi (X) ∪ Cωj (X). In words, the environment is economic when at

every state of the world and for any given alternative, there are at least two individuals who do not

choose this alternative at that state from the set of all alternatives.

A mechanism µ = (M, g) assigns each individual i ∈ N a non-empty message space Mi and

specifies an outcome function g : M → X where M = × j∈N M j. Given a mechanism µ and

m−i ∈ M−i := × j,iM j, the opportunity set of individual i pertaining to others’ message profile m−i

in mechanism µ is Oµi (m−i) := g(Mi,m−i) = {g(mi,m−i) | mi ∈ Mi}.8

A message profile m∗ ∈ M is a Nash equilibrium of mechanism µ at state ω ∈ Ω if

g(m∗) ∈ ∩i∈NCωi (Oµi (m∗
−i)).

9 Given mechanism µ, the correspondence NEµ : Ω ↠ 2X identifies

Nash equilibrium outcomes of mechanism µ at state ω ∈ Ω and is defined by NEµ(ω) := {x ∈

X | ∃m∗ ∈ M s.t. g(m∗) ∈ ∩i∈NCωi (Oµi (m∗
−i)) and g(m∗) = x}. A mechanism µ implements SCC f

on domain Ω̃ in Nash equilibrium if NEµ(ω) = f (ω) for all ω ∈ Ω̃.

This study restricts planners to mechanisms that result in ex-post fair NE outcomes. Given any

state, only NE behavior at that state is (strategically) stable and hence, we dismiss (ex-post) fairness

violations under non-Nash behavior as irrelevant. Obviously, not all NE behavior lead to ex-post

fair situations. In many economic environments of interest, after observing the realized state,

individuals may possess the ability to challenge the strategically stable outcome of the mechanism

based on non-discrimination policy obligations. In rational environments, a NE that is not (ex-

post) fair involves an individual who wishes to be in the shoes of another: At the realized NE,

there is an alternative in the envied individual’s opportunity set that the envying individual ranks

strictly higher than the outcome of the mechanism. While the above arguments lead to no-envy

Nash implementation, another well-known form of fairness entails anonymity at realized NE play,

trivially eliminating justified envy. These lead us to the following notions of implementation:

Definition 1. A mechanism µ no-envy Nash implements SCC f on domain Ω̃, f : Ω̃→ X, if

(i) for all ω ∈ Ω̃ and all x ∈ f (ω), there is m(x,ω) ∈ M such that g(m(x,ω)) = x ∈ Cωi (Oµj (m
(x,ω)
− j ))

for all i, j ∈ N; and

8These sets are also called manipulation sets (Border & Jordan, 1983) and option sets (Barbera & Peleg, 1990).
9The notion of NE in behavioral domains, the behavioral Nash equilibrium, is introduced by Korpela (2012).
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(ii) if m∗ ∈ M is such that g(m∗) ∈ Cω̃i (Oµj (m
∗
− j)) for all i, j ∈ N, then g(m∗) ∈ f (ω̃).

Similarly, a mechanism µ anonymous implements SCC f on domain Ω̃, f : Ω̃→ X, if

(iii) for allω ∈ Ω̃ and all x ∈ f (ω), there is m(x,ω) ∈ M such that g(m(x,ω)) = x ∈ ∩i∈NCωi (Oµi (m(x,ω)
−i )),

and Oµi (m(x,ω)
−i ) = Oµj (m

(x,ω)
− j ) for all i, j ∈ N; and

(iv) if m∗ ∈ M is such that g(m∗) ∈ ∩i∈NCω̃i (Oµi (m∗
−i)) and Oµi (m∗

−i) = Oµj (m
∗
− j) for all i, j ∈ N, then

g(m∗) ∈ f (ω̃).

A practical shortcut to formalizing our implementation notions involves the introduction of the

following refinements of NE: A message profile m∗ ∈ M is a no-envy Nash equilibrium (NNE)
of mechanism µ at state ω ∈ Ω if g(m∗) ∈ Cωi (Oµj (m

∗
− j)) for all i, j ∈ N. So, a mechanism µ no-

envy Nash implements SCC f on domain Ω̃ if and only if NNEµ(ω) = f (ω) for all ω ∈ Ω̃, where

NNEµ : Ω↠ 2X, the set of NNE outcomes of mechanism µ at stateω ∈ Ω, is given by NNEµ(ω) :=

{x ∈ X | ∃m∗ ∈ M s.t. m∗ ∈ M is an NNE of µ at ω}. A message profile m∗ ∈ M is an anonymous
Nash equilibrium (ANE) of mechanism µ at state ω ∈ Ω if g(m∗) ∈ ∩i∈NCωi (Oµi (m∗

−i)) and

Oµi (m∗
−i) = Oµj (m

∗
− j) for all i, j ∈ N. Consequently, a mechanism µ anonymous implements SCC f

on domain Ω̃ if and only if ANEµ(ω) = f (ω) for all ω ∈ Ω̃, where ANEµ : Ω ↠ 2X is given by

ANEµ(ω) := {x ∈ X | ∃m∗ ∈ M s.t. m∗ ∈ M is an ANE of µ at ω}.10

Ex-post fair mechanisms provide all individuals the same opportunity set at each message

profile. Formally, we say that mechanism µ is ex-post fair if for all m ∈ M, we have Oµi (m−i) =

Oµj (m− j) for all i, j ∈ N.11 The following observation, however, tells that ex-post fairness of a

mechanism exerts quite a heavy burden in implementation: Ex-post fair mechanisms sustain the

10We thank an anonymous referee and Kemal Yıldız for suggesting this approach. We wish to emphasize that
our refinements enable equilibrium selection, and that this study does not propose these NE refinements based on
individuals’ strategic decision concerns per se. Indeed, we focus on full implementation with fairness properties.
However, as ex-post violations of fairness and presence of justified envy constitute discriminatory practices in many
economic environments of interest, and challenging such practices ex-post is getting more frequent and less costly in
civilized societies, our implementation notions rest on a plausible specification of players’ behavior.

11Our notion of ex-post fair mechanism coincides with that of Korpela (2018) when attention is restricted in his
setting only to public alternatives. Meanwhile, a natural question arising from pursuing fairness in implementation
is what would happen if planners were restricted to symmetric mechanisms (Deb & Pai, 2017; Azrieli & Jain, 2018;
Korpela, 2018). Our example in Section 3 shows ex-post fairness at NE is violated even when the mechanism at hand
is symmetric. We argue that symmetry is a considerably stronger requirement than ex-post fairness: Under symmetry,
the message spaces have to be equal across individuals, and outcomes ‘across the diagonal’ have to equal one another,
while under ex-post fairness we are talking about the sets of opportunities provided. Notwithstanding, we also observe
that as put by Cao and Yang (2018), “defining natural and useful classes of symmetric games is a nontrivial task;
systematic studies are fairly lacking.” Indeed, trying to give a formal definition gets more complicated with more than
two players. That study offers three types of symmetry formulations in the rational domain. Indeed, the symmetry
notion mentioned above is equivalent to ordinary symmetry (e.g., the prisoners’ dilemma) in Cao and Yang (2018).
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same opportunity set of alternatives regardless of the individual and the message profile at hand.12

Proposition 1. If a mechanism is ex-post fair, then there is A ∈ X such that Oµi (m−i) = A for all

i ∈ N and all m ∈ M.

Proof. Let m ∈ M and suppose Oµi (m−i) = Oµj (m− j) = A for all i, j ∈ N. In what follows, we show

that Oµi (m̃−i) = A for all i ∈ N for any m̃ ∈ M such that m̃ , m. Let m̃ ∈ M \ {m}.

Let m(1) = (m̃1,m−1). Observe that by hypothesis Oµ1(m(1)
−1) = Oµj (m

(1)
− j ) for all j , 1 and

Oµ1(m(1)
−1) = Oµ1(m−1) = A by construction. Hence, Oµj (m

(1)
− j ) = A for all j , 1.

Let m(2) = (m̃1, m̃2, (mi)i,1,2). Observe that by hypothesis, Oµ2(m(2)
−2) = Oµj (m

(2)
− j ) for all j , 2 and

Oµ2(m(2)
−2) = Oµ2(m(1)

−2) = Oµ1(m(1)
−1) = A by construction. Thus, Oµj (m

(2)
− j ) = A for all j , 2.

Proceeding similarly, by letting m(k) = (m̃1, . . . , m̃k, (mi)i,1,...,k), we see (by hypothesis) Oµk (m(k)
−k) =

Oµj (m
(k)
− j) for all j , k and Oµk (m(k)

−k) = Oµk (m(k−1)
−k ) = A by construction. So, Oµj (m

(k)
− j) = A for all j , k.

Observe that when k = n, m(n) = m̃, and hence Oµj (m
(n)
− j ) = Oµj (m̃− j) = A for all j , n. Further,

by hypothesis, Oµi (m̃−i) = Oµj (m̃− j) for all i, j ∈ N. Therefore, Oµi (m̃−i) = A for all i ∈ N.

The notion of implementation in Gaspart (2003), implementability in NE with Equality of

Attainable Sets (EAS) is closely related to, yet different from anonymous implementation. Mech-

anism µ implements SCC f on domain Ω̃ in NE with EAS if (i) for all ω ∈ Ω̃, NEµ(ω) = f (ω), and

(ii) for all ω ∈ Ω̃ and all m∗ ∈ NEµ(ω), Oµi (m∗
−i) = Oµj (m

∗
− j) for all i, j ∈ N. We note that if mech-

anism µ implements SCC f on domain Ω̃ in NE with EAS, then µ also anonymous implements f

on domain Ω̃. However, the reverse of this relation does not hold as shown in the example of the

next section: Implementation in NE with EAS fails because there is a state in which mechanism µ

possesses a ‘bad’ NE not aligned with SCC f . But, anonymous implementability holds as all ANE

outcomes are aligned with SCC f across all the states, and this particular bad NE is not an ANE.

Thanks to the necessity result for Nash implementability of an SCC by Maskin (1999), we

know that if f : Ω → X is Nash implementable, then it is Maskin-monotonic: x ∈ f (ω) and

Lωi (x) ⊂ Lω̃i (x) for all i ∈ N implies x ∈ f (ω̃). de Clippel (2014) generalizes Maskin’s results

on Nash implementation to behavioral domains. The resulting necessary condition for behavioral

implementation is equivalent to Maskin-monotonicity in the rational domain (Barlo & Dalkıran,

2022a) and calls for the existence of a profile of sets that are consistent with this SCC at hand: We

say that a profile of sets S := (S i(x, ω))i∈N,ω∈Ω̃,x∈ f (ω) is consistent with a given SCC f : Ω̃→ X if

(i) if x ∈ f (ω) for some ω ∈ Ω̃, then x ∈ ∩i∈NCωi (S i(x, ω)), and

(ii) if x ∈ f (ω) \ f (ω̃) for some ω, ω̃ ∈ Ω̃, then x < ∩i∈NCω̃i (S i(x, ω)).

12To our surprise, we could not find this observation in other studies. Hence, we include it to our paper for com-
pleteness purposes.
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3 An Example

In what follows, we present an example in the rational domain involving an SCC that is anony-

mous as well as no-envy implementable but is not implementable in NE.13 We have two agents,

Ann and Bob, and three alternatives, a, b, c. The domain Ω̃ equals {ω(1), ω(2), ω(3)}, and individuals’

state-contingent rankings are as in Table 1. The planner aims to implement SCC f : Ω̃→ X given

ω(1) ω(2) ω(3)

Rω
(1)

A Rω
(1)

B
b a
a b
c c

Rω
(2)

A Rω
(2)

B
a, b c
c a, b

Rω
(3)

A Rω
(3)

B
c c
a a
b b

Table 1: Individuals’ state-contingent rankings.

by f (ω(1)) = {a}, f (ω(2)) = {b}, and f (ω(3)) = {c}. Consider the mechanism in Table 2. We note

that this mechanism is symmetric (across the diagonal) but not ex-post fair (Korpela, 2018): For

m = (D,M), OµA(M) = {a, c} and OµB(D) = {a, b}.

Bob

Ann

L M R
U a c a
M c c a
D a a b

Table 2: The mechanism.

In what follows, we show that µ no-envy as well as anonymous implements SCC f . The mes-

sage profile (U, L) (shown as circled) is a NNE and an ANE of µ at state ω(1) as a ∈ Cω
(1)

A (OµA(L))∩

Cω
(1)

B (OµB(U)) and OµA(L) = OµB(U) = {a, c}. Moreover, NEµ(ω(1)) = {a}, i.e., there is no NE out-

come at ω(1) other than a; hence, NNEµ(ω(1)) = ANEµ(ω(1)) = {a} = f (ω(1)). On the other hand,

b ∈ Cω
(2)

A (OµA(R)) ∩ Cω
(2)

B (OµB(D)) and OµA(R) = OµB(D) = {a, b} enables us to conclude that (D,R)

(depicted with a square around it) is both a NNE and ANE, so b ∈ NNEµ(ω(2)) ∩ ANEµ(ω(2)).

Meanwhile, the other NE at ω(2) are given by (D, L) and (D,M). As OµA(L) = OµA(M) = {a, c} and

OµB(D) = {a, b}, and g(D, L) = g(D,M) = a < Cω
(2)

B ({a, c}) we conclude that neither (D, L) nor

(D,M) is a NNE or ANE of µ at ω(2); hence, NNEµ(ω(2)) = ANEµ(ω(2)) = {b} = f (ω(2)). Similarly,

c ∈ Cω
(3)

A (OµA(M)) ∩ Cω
(3)

B (OµB(M)) and OµA(M) = OµB(M) = {a, c} implies (M,M) (depicted with a

13We remark that as this SCC is not implementable in NE, it is not implementable in NE with EAS (Gaspart, 2003).
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diamond around it) is both a NNE and an ANE; ergo, c ∈ NNEµ(ω(3)) ∩ ANEµ(ω(3)). We also

note that (M, L) and (U,M) both are NNE and ANE that result in c. Additionally, c is the only NE

outcome at ω(3), and this implies NNEµ(ω(3)) = ANEµ(ω(3)) = {c} = f (ω(3)).

To illustrate how NE that are not NNE/ANE may constitute grounds for objection based on

justified envy, let us consider the message profile (D,M), a NE at state ω(2) resulting in alternative

a, which is not desirable at that state according to the given SCC. Then, only Ann (but not Bob)

has alternative c as an additional opportunity on top of a while c is Bob’s top choice. Conse-

quently, if the planner were to implement a on grounds of it being the outcome of a strategically

stable message profile at ω(2), Bob—envying Ann’s equilibrium opportunities in NE (D,M) at state

ω(2)—has strict incentives to challenge planner’s practice. At the realized state ω(2) and behavior

profile (D,M), Bob could go to some court of law and file a complaint based on discrimination

saying that “why is Ann given the option of obtaining c while I am not?” 14

We wish to remark that the mechanism we employ in this discussion is symmetric. This estab-

lishes that justified envy at NE may arise even under symmetric mechanisms.

Meanwhile, (D,M) being NE at ω(2) also shows that µ does not implement f in NE since

NEµ(ω(2)) = {a, b} , {b} = f (ω(2)).

One may wonder if there is another mechanism that implements SCC f in NE. In what follows,

we establish that in this example, the answer is negative: f is not Nash implementable.

To achieve a contradiction, suppose that SCC f : Ω̃ → X were implementable in NE. Then,

thanks to de Clippel’s necessity result, we know there is a profile of sets S = (S i(x, ω))i∈N,ω∈Ω̃,x∈ f (ω)

consistent with f . In particular, for any i ∈ N, ω ∈ Ω̃, and x ∈ f (ω), S i(x, ω) is given by Oµi (m(x,ω)
−i )

where m(x,ω) ∈ M is a NE sustaining x, i.e., g(m(x,ω)) = x ∈ ∩i∈NCωi (Oµi (m(x,ω)
−i )). So, f (ω(2)) = {b}

and (i) of consistency implies S B(b, ω(2)) equals either {b} or {a, b}. If S B(b, ω(2)) = {b}, then the

mechanism µ has a NE m(b,ω(2)) ∈ M such that OµB(m(b,ω(2))
A ) = {b} (i.e., b constitutes Bob’s only

choice) and hence for all messages mB ∈ MB we have g(m(b,ω(2))
A ,mB) = b. So, b ∈ OµA(mB) for

all mB ∈ MB. As b is Ann’s top-ranked alternative at ω(1) and OµB(m(b,ω(2))
A ) = {b}, we observe that

(m(b,ω(2))
A ,mB) is a NE of µ at ω(1) since b ∈ Cω

(1)

A (OµA(mB)) ∩ Cω
(1)

B (OµB(m(b,ω(2))
A )). But, b < f (ω(1)) =

{a}. Thus, S B(b, ω(2)) = {a, b} as S B(b, ω(2)) cannot equal {b}. So, S B(b, ω(2)) = OµB(m(b,ω(2))
A ) =

{a, b} and hence there exists m̃B ∈ MB such that g(m(b,ω(2))
A , m̃B) = a; ergo, a ∈ OµA(m̃B). Then,

because a ∈ Cω
(2)

B (S B(b, ω(2))) = Cω
(2)

B ({a, b}) = {a, b} and a is Ann’s top-ranked alternative at

ω(2), a emerges as a Nash equilibrium outcome (and message profile (m(b,ω(2))
A , m̃B) as a NE) at ω(2)

because a ∈ Cω
(2)

A (OµA(m̃B)) ∩ Cω
(1)

B (OµB(m(b,ω(2))
A )). But, a < f (ω(2)) = {b}. Hence, we cannot have

S B(b, ω(2))) = {a, b} as well, which implies the desired contradiction.

14Similarly, Ann envies Bob’s equilibrium opportunities in NE (D, L) at state ω(1): This NE results in alternative a,
and in equilibrium only Bob has b as an additional opportunity while it is Ann’s top ranked alternative at ω(1).
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4 Necessity and Sufficiency

We prove that the following conditions are necessary and almost sufficient for no-envy and

anonymous implementation of SCCs and apply both to the rational and the behavioral domains:

Definition 2. Given an environment ⟨N, X,Ω, (Cωi )i∈N, ω∈Ω⟩ and SCC f on domain Ω̃, f : Ω̃→ X,

1. a profile of sets S := (S i(x, ω))i∈N, ω∈Ω̃, x∈ f (ω) is no-envy consistent with f on domain Ω̃ if

(i) for all ω ∈ Ω̃ and all x ∈ f (ω), x ∈ Cωi (S j(x, ω)) for all i, j ∈ N; and

(ii) x ∈ f (ω)\ f (ω̃) for someω, ω̃ ∈ Ω̃ implies there are j, k ∈ N such that x < Cω̃j (S k(x, ω)).

2. a profile of sets S := (S (x, ω))ω∈Ω̃, x∈ f (ω) is anonymous consistent with f on domain Ω̃ if

(i) for all ω ∈ Ω̃ and all x ∈ f (ω), x ∈
⋂

i∈N Cωi (S (x, ω)); and

(ii) x ∈ f (ω) \ f (ω̃) for some ω, ω̃ ∈ Ω̃ implies that x <
⋂

i∈N Cω̃i (S (x, ω)).

It is straightforward to see that if S := (S (x, ω))ω∈Ω̃, x∈ f (ω) is a profile of sets anonymous consis-

tent with SCC f on Ω̃, then S̃ := (S̃ i(x, ω))i∈N, ω∈Ω̃, x∈ f (ω) is a profile of sets no-envy consistent with

f on Ω̃ when S̃ i(x, ω) = S (x, ω) for all i ∈ N. We note this observation as Remark 1:

Remark 1. If there is a profile of sets anonymous consistent with SCC f on domain Ω̃, then there

is a profile of sets no-envy consistent with f on domain Ω̃.

Below, we present a characterization of no-envy and anonymous implementable SCCs.

Theorem 1. Given an environment ⟨N, X,Ω, (Cωi )i∈N, ω∈Ω⟩,

1. [Necessity and sufficiency for no-envy implementation:]

(i) if SCC f : Ω̃ → X is no-envy implementable on domain Ω̃, then there is a profile of

sets no-envy consistent with f on domain Ω̃.

(ii) if there is a profile of sets no-envy consistent with a no-veto SCC f : Ω̃ → X, then f is

no-envy implementable on domain Ω̃ whenever n ≥ 3.

2. [Necessity and sufficiency for anonymous implementation:]

(i) if SCC f : Ω̃→ X is anonymous implementable on domain Ω̃, then there is a profile of

sets anonymous consistent with f on domain Ω̃.

(ii) if there is a profile of sets anonymous consistent with a unanimous SCC f : Ω̃ → X,

then f is anonymous implementable on domain Ω̃ whenever n ≥ 3.
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Proof of (1.i) of Theorem 1. To prove (1.i) of Theorem 1, suppose that f : Ω̃ → X is no-

envy implementable on domain Ω̃. So, for all ω and all x ∈ f (ω), there is mx,ω ∈ M such that

g(mx,ω) = x ∈ Cωi (Oµj (m
x,ω
− j )) for all i, j ∈ N. Define S as follows: for all i, ω, and x ∈ f (ω),

S i(x, ω) := Oµi (mx,ω
−i ) for any i ∈ N. Then S satisfies (i) of no-envy consistency as for all i ∈ N,

ω ∈ Ω̃, and x ∈ f (ω), g(mx,ω) = x ∈ Cωi (Oµj (m
x,ω
− j )) for all j ∈ N. To show that S satisfies (1.ii) of

no-envy consistency, suppose (for a contradiction that) for some ω, ω̃ ∈ Ω̃, x ∈ f (ω) \ f (ω̃) and

x ∈ Cω̃i (S j(x, ω)) for all i, j ∈ N. Then, x ∈ Cω̃i (Oµj (m
x,ω
− j )) for all i, j ∈ N since S i(x, ω) = Oµi (mx,ω

−i )

for any i ∈ N. As µ no-envy implements f on Ω̃, this implies x ∈ f (ω̃), a contradiction.

Proof of (1.ii) of Theorem 1. Suppose SCC f : Ω̃ → X is no-veto and the profile S =
(S i(x, ω))i∈N, ω∈Ω, x∈ f (ω) is no-envy consistent with f on domain Ω̃. Consider the canonical mech-

anism given as follows: Mi = X × Ω̃ × X × N where mi = (xi, ωi, yi, ki) with xi ∈ f (ωi), yi ∈ X,

ωi ∈ Ω̃, and ki ∈ N for all i ∈ N; the outcome function g : M → X defined by

Rule 1: If mi = (x, ω, ·, ·) for all i ∈ N, then g(m) = x;

Rule 2: If mi = (x, ω, ·, ·) for all i ∈ N \ { j} for some j ∈ N and m j , mi with m j = (x′, ω′, y′, ·), then

g(m) =

 x if y′ < S j(x, ω),

y′ if y′ ∈ S j(x, ω).

Rule 3: In all other cases, g(m) = yi∗ where i∗ = max{i ∈ N | ki ≥ k j ∀ j ∈ N}.

The result holds thanks to the following two claims.

Claim 1. For all ω ∈ Ω̃ and x ∈ f (ω), m(x,ω) defined by m(x,ω)
i = (x, ω, x, 1) is an NNE of µ at ω s.t.

g(m(x,ω)) = x.

Proof. Let ω ∈ Ω̃, x ∈ f (ω), and m(x,ω) be as in the statement of the claim. Then, Rule 1 holds

under m(x,ω). So, g(m(x,ω)) = x, and by Rules 1 and 2, Oµi (m(x,ω)
−i ) = S i(x, ω) for all i ∈ N. By (i) of

no-envy consistency, g(m(x,ω)) = x ∈ Cωi (S j(x, ω)) for all i, j ∈ N. So, m(x,ω) is an NNE of µ at ω.

Claim 2. If m∗ is an NNE of µ at ω ∈ Ω̃, then g(m∗) ∈ f (ω).

Proof. Suppose m∗ is an NNE of µ at ω ∈ Ω̃.

Suppose additionally that Rule 1 holds under m∗. So, let m∗i = (x′, ω′, ·, ·) with ω′ ∈ Ω̃ and

x′ ∈ f (ω′) for all i ∈ N. By Rules 1 and 2, Oµi (m∗
−i) = S i(x′, ω′) for all i ∈ N and g(m∗) = x′. If

x′ < f (ω), then there are k, ℓ ∈ N such that x′ < Cωk (S ℓ(x′, ω′)) (by (ii) of no-envy consistency); so

m∗ is not an NNE of µ at ω. This delivers the desired contradiction and establishes that g(m∗) =

x′ ∈ f (ω) when Rule 1 holds under m∗.
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If Rule 2 or 3 holds under m∗, then (by Rules 1,2, and 3) for all i ∈ N \ { j} for some j ∈ N,

Oµi (m∗
−i) = X. As SCC f is no-veto, g(m∗) ∈ ∩i∈N\{ j}Cωi (X) implies g(m∗) ∈ f (ω).

Proof of (2.i) of Theorem 1. To prove (2.i) of Theorem 1, suppose that f : Ω̃→ X is anonymous

implementable on domain Ω̃. So, for all ω and all x ∈ f (ω), there is mx,ω ∈ M such that Oµi (mx,ω
−i ) =

Oµj (m
x,ω
− j ) for all i, j ∈ N and g(mx,ω) = x ∈ ∩i∈NCωi (Oµ(mx,ω

−i )). Define S as follows: for all ω and

x ∈ f (ω), S (x, ω) := Oµi (mx,ω
−i ) for any i ∈ N. Then S satisfies (i) of anonymous consistency as for

all ω ∈ Ω̃, and x ∈ f (ω), g(mx,ω) = x ∈ ∩i∈NCωi (Oµ(mx,ω
−i )) and Oµi (mx,ω

−i ) = Oµj (m
x,ω
− j ) for all i, j ∈ N.

To show that S satisfies (ii) of anonymous consistency, suppose for some ω, ω̃ ∈ Ω̃, x ∈ f (ω)\ f (ω̃)

and x ∈ ∩i∈NCω̃i (S (x, ω)). Then, x ∈ ∩i∈NCω̃i (Oµ(mx,ω
−i )). Since, Oµi (mx,ω

−i ) = S (x, ω) = Oµj (m
x,ω
− j ) for

all i, j ∈ N, mx,ω is an ANE at ω̃ as x = g(mx,ω). Because µ implements f anonymously on Ω̃, we

have x ∈ f (ω̃), a contradiction.

Proof of (2.ii) of Theorem 1. Suppose SCC f : Ω̃ → X is unanimous and the profile S =
(S (x, ω))ω∈Ω, x∈ f (ω) is anonymous consistent with f on domain Ω̃. Consider the canonical mecha-

nism given as follows: Mi = X × Ω̃ × X × N where mi = (xi, ωi, yi, ki) with xi ∈ f (ωi), yi ∈ X,

ωi ∈ Ω̃, and ki ∈ N for all i ∈ N; the outcome function g : M → X defined by

Rule 1: If mi = (x, ω, ·, ·) for all i ∈ N, then g(m) = x;

Rule 2: If mi = (x, ω, ·, ·) for all i ∈ N \ { j} for some j ∈ N and m j , mi with m j = (x′, ω′, y′, ·), then

g(m) =

 x if y′ < S (x, ω),

y′ if y′ ∈ S (x, ω).

Rule 3: In all other cases, g(m) = yi∗ where i∗ = max{i ∈ N | ki ≥ k j ∀ j ∈ N}.

The result follows from the claims below.

Claim 3. For all ω ∈ Ω̃ and x ∈ f (ω), m(x,ω) defined by m(x,ω)
i = (x, ω, x, 1) is an ANE of µ at ω s.t.

g(m(x,ω)) = x.

Proof. Let ω ∈ Ω̃, x ∈ f (ω), and m(x,ω) be as in the statement of the claim. Then, Rule 1 holds

under m(x,ω). So, g(m(x,ω)) = x, and due to Rules 1 and 2, Oµi (m(x,ω)
−i ) = S (x, ω) for all i ∈ N. By (i)

of anonymous consistency, g(m(x,ω)) = x ∈ ∩i∈NCωi (S (x, ω)). So, m(x,ω) is an ANE of µ at ω.

Claim 4. If m∗ is an ANE of µ at ω ∈ Ω̃, then g(m∗) ∈ f (ω).

Proof. Suppose m∗ is an ANE of µ at ω ∈ Ω̃.

Suppose additionally that Rule 1 holds under m∗. So, let m∗i = (x′, ω′, ·, ·) with ω′ ∈ Ω̃ and

x′ ∈ f (ω′) for all i ∈ N. By Rules 1 and 2, Oµi (m∗
−i) = S (x′, ω′) for all i ∈ N and g(m∗) = x′. If
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x′ < f (ω), then x′ < ∩i∈NCωi (S (x′, ω′)) (by (ii) of anonymous consistency); this is equivalent to

x′ < ∩i∈NCωi (Oµi (m∗
−i)) thanks to Rule 1; i.e., m∗ is not an ANE of µ at ω. This delivers the desired

contradiction and establishes that g(m∗) = x′ ∈ f (ω) when Rule 1 holds under m∗.

If Rule 2 holds under m∗, then (by Rules 1,2, and 3) for all i ∈ N \ { j} for some j ∈ N,

Oµi (m∗
−i) = X and Oµj (m

∗
− j) = S (x, ω). Thus, S (x, ω) = X as m∗ is an ANE. Then, as f is unanimous,

g(m∗) ∈ ∩i∈NCωi (X) implies g(m∗) ∈ f (ω).

On the other hand, if Rule 3 holds under m∗, then for all i ∈ N, Oµi (m∗
−i) = X. As m∗ is an ANE,

g(m∗) ∈ ∩i∈NCωi (X). This implies that g(m∗) ∈ f (ω) since f is unanimous.

In the light of Remark 1, Theorem 1 implies the following immediate result:

Corollary 1. Given an environment ⟨N, X,Ω, (Cωi )i∈N, ω∈Ω⟩, suppose n ≥ 3. If f : Ω̃→ X is no-veto

and anonymous implementable on Ω̃, then it is no-envy implementable on Ω̃.

5 The Rational Domain

Next, we establish the equivalence of no-envy consistency, anonymous consistency, and com-

mon Maskin independence (Gaspart, 2003; Korpela, 2018) in the rational domain:

Theorem 2. Given a rational environment ⟨N, X,Ω, (Cωi )i∈N, ω∈Ω⟩ and SCC f : Ω̃→ X,

(i) there is a profile of sets no-envy consistent with SCC f on domain Ω̃ if and only if there is a

profile of sets anonymous consistent with SCC f on domain Ω̃;

(ii) there is a profile of sets anonymous consistent with SCC f on domain Ω̃ if and only if f

satisfies common Maskin independence on domain Ω̃: For any ω, ω̃ ∈ Ω̃,

x ∈ f (ω) and ∩i∈N Lωi (x) ⊂ ∩i∈N Lω̃i (x) implies x ∈ f (ω̃).

Proof of Theorem 2-(i). (⇒) Let S := (S i(x, ω))i∈N,ω∈Ω̃, x∈ f (ω) be the profile of sets no-envy

consistent with f on domain Ω̃. Define S̃ := (S (x, ω))ω∈Ω̃, x∈ f (ω) such that S (x, ω) = ∩i∈N Lωi (x)

for all ω ∈ Ω̃ and all x ∈ f (ω). Then, (2.i) of anonymous consistency follows trivially. Suppose

x ∈ f (ω) but x < f (ω̃) while x ∈ ∩i∈NCω̃i (∩ j∈N Lωj (x)) to obtain a contradiction. Observe that

S i(x, ω) ⊂ ∩ j∈N Lωj (x) for all i ∈ N due to (1.i) of no-envy consistency. Then, the IIA implies that

x ∈ Cω̃i (S j(x, ω)) for all i, j ∈ N, i.e., (1.ii) of no-envy consistency cannot hold.

(⇐) Let S := (S (x, ω))ω∈Ω̃, x∈ f (ω) be the profile of sets anonymous consistent with f on domain Ω̃.

Define S̃ := (S i(x, ω))i∈N,ω∈Ω̃, x∈ f (ω) such that S i(x, ω) = S (x, ω) for all i ∈ N. Then, (1.i) and (1.ii)

of no-envy consistency follows immediately from (2.i) and (2.ii) of anonymous consistency.
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Proof of Theorem 2-(ii). (⇒) Suppose that S := (S (x, ω))ω∈Ω̃, x∈ f (ω) is anonymous consistent with

f on domain Ω̃ and adopt the hypothesis that ω, ω̃ ∈ Ω̃, x ∈ f (ω), and ∩i∈N Lωi (x) ⊂ ∩i∈N Lω̃i (x).

Hence, by (2.i) of anonymous consistency, we see that S (x, ω) ⊂ ∩i∈N Lωi (x). Ergo, it follows from

the hypothesis that S (x, ω) ⊂ ∩i∈N Lω̃i (x). If x < f (ω̃), then by (2.ii) of anonymous consistency,

there is j ∈ N such that x < Cω̃j (S (x, ω)). So, there is j ∈ N and y∗ ∈ S (x, ω) such that y∗Pω̃j x; i.e.,

y∗ < Lω̃j (x). But, y∗ ∈ S (x, ω) and y∗ < Lω̃j (x) contradicts S (x, ω) ⊂ ∩i∈N Lω̃i (x).

(⇐) Define S so that for any ω ∈ Ω̃ and x ∈ f (ω), we have S (x, ω) := ∩i∈N Lωi (x). Then, S satisfies

(2.i) of anonymous consistency trivially due to the definition of lower contour sets. To obtain (2.ii)

of anonymous consistency, suppose that x ∈ f (ω) \ f (ω̃) for some ω, ω̃ ∈ Ω̃. So, S (x, ω) = ∩i∈N Lωi
is not a subset of ∩i∈N Lω̃i (x). Thus, there is j ∈ N and y∗ ∈ S (x, ω) with y∗ < Lω̃j (x); i.e. y∗Pω̃j x.

Ergo, x < Cω̃j (S (x, ω)).

Theorem 3 leads to the following result that strengthens Corollary 1 in the rational domain:

Corollary 2. Given a rational environment ⟨N, X,Ω, (Cωi )i∈N, ω∈Ω⟩, suppose n ≥ 3.

1. If a unanimous SCC f is no-envy implementable on Ω̃, then it is anonymous implementable

on Ω̃;

2. if f is a no-veto SCC, then f is anonymous implementable on Ω̃ if and only if it is no-envy

implementable on Ω̃.

We proceed our analysis by strengthening our necessity and sufficiency results by adopting

strong versions of no-envy consistency and anonymous consistency which parallel those in Moore

and Repullo (1990), Korpela (2012), and de Clippel (2014).

Definition 3. Given an environment ⟨N, X,Ω, (Cωi )i∈N, ω∈Ω⟩ and SCC f on domain Ω̃, f : Ω̃→ X,

1. a profile of sets S := (S i(x, ω))i∈N,ω∈Ω̃, x∈ f (ω) is strong no-envy consistent with f if

(i) for all ω ∈ Ω̃ and all x ∈ f (ω), x ∈ Cωi (S j(x, ω)) for all i, j ∈ N; and

(ii) x ∈ f (ω) \ f (ω̃) for ω, ω̃ ∈ Ω̃ implies there are j, k ∈ N such that x < Cω̃j (S k(x, ω)); and

(iii) x ∈ Cωi (X) for all i ∈ N \ { j} for some j ∈ N and there are y ∈ X and ω̃ ∈ Ω with

y ∈ f (ω̃) such that x ∈ Cωj (S k(y, ω̃)) for all k ∈ N implies x ∈ f (ω).

2. a profile of sets S := (S (x, ω))ω∈Ω̃, x∈ f (ω) is strong anonymous consistent with f if

(i) for all ω ∈ Ω̃ and all x ∈ f (ω), x ∈
⋂

i∈N Cωi (S (x, ω)); and

(ii) x ∈ f (ω) \ f (ω̃) for ω, ω̃ ∈ Ω̃ implies that x <
⋂

i∈N Cω̃i (S (x, ω)); and
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(iii) x ∈ Cωi (X) for all i ∈ N \ { j} for some j ∈ N and there are y ∈ X and ω̃ ∈ Ω with

y ∈ f (ω̃) such that x ∈ Cωj (S (y, ω̃)) implies x ∈ f (ω).

In the rational domain, we strengthen our necessity and sufficiency results as follows:

Theorem 3. Given a rational environment ⟨N, X,Ω, (Cωi )i∈N, ω∈Ω⟩,

1. [Necessity and sufficiency for no-envy implementation:]

(i) if SCC f : Ω̃ → X is no-envy implementable on domain Ω̃, then there is a profile of

sets strong no-envy consistent with f on domain Ω̃.

(ii) if there is a profile of sets strong no-envy consistent with a unanimous SCC f : Ω̃→ X,

then f is no-envy implementable on domain Ω̃ whenever n ≥ 3.

2. [Necessity and sufficiency for anonymous implementation:]

(i) if SCC f : Ω̃→ X is anonymous implementable on domain Ω̃, then there is a profile of

sets strong anonymous consistent with f on domain Ω̃.

(ii) if there is a profile of sets strong anonymous consistent with a unanimous SCC f : Ω̃→

X, then f is anonymous implementable on domain Ω̃ whenever n ≥ 3.

Proof of (1.i) of Theorem 3. Following the proof of (1.i) of Theorem 1, it suffices to establish

(1.iii) of Definition 3. Suppose x ∈ Cωi (X) for all i ∈ N \ { j} for some j ∈ N and there are y ∈ X

and ω̃ ∈ Ω with y ∈ f (ω̃) such that x ∈ Cωj (S k(y, ω̃)) for all k ∈ N. Because y ∈ f (ω̃), there is

a NNE my,ω̃ of µ at ω̃ such that g(my,ω̃) = y. Consider Oµk (my,ω̃
−k ) for all k ∈ N, the corresponding

opportunity sets of each individual k under my,ω̃, and observe that, it follows from the IIA that for

all i ∈ N \ { j}, we have x ∈ Cωi (Oµk (my,ω̃
−k )) for all k ∈ N as x ∈ Cωi (X) for all i ∈ N \ { j}. Furthermore,

x ∈ Cωj (S k(y, ω̃)) for all k ∈ N implies that x ∈ Cωj (Oµk (my,ω̃
−k ) as S k(y, ω̃) = Ok(m

y,ω̃
−k ) for all k ∈ N.

This implies my,ω̃ is an NNE of µ at ω as well. Therefore, x ∈ f (ω) by (ii) of Definition 1.

Proof of (1.ii) of Theorem 3. Employing the same mechanism constructed in the proof of (1.ii)

of Theorem 1, the only change needed concerns modifying Claim 2 of that proof to the following:

Claim 5. If m∗ is an NNE of mechanism µ constructed in the proof of (1.ii) of Theorem 1 at ω ∈ Ω̃,

then g(m∗) ∈ f (ω).

Proof. Suppose m∗ is an NNE of µ constructed in the proof of (1.ii) of Theorem 1 at ω ∈ Ω̃.

If Rule 1 holds under m∗ at ω ∈ Ω̃, then the same arguments apply verbatim.
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If Rule 2 holds under m∗ at ω ∈ Ω̃, then for all i ∈ N \ { j} for some j ∈ N, Oµi (m∗
−i) = X and

Oµj (m
∗
− j) = S j(y, ω̃) for some y ∈ f (Ω̃) and ω̃ ∈ Ω̃. As m∗ is an NNE at ω, we have g(m∗) ∈ Cωi (X)

for all i ∈ N \ { j} for some j ∈ N and g(m∗) ∈ Cωj (S k(y, ω̃)) for all k ∈ N. It follows from (1.iii) of

strong no-envy consistency that g(m∗) ∈ f (ω), as desired.

If Rule 3 holds under m∗ at ω ∈ Ω̃, then for all i ∈ N, Oµi (m∗
−i) = X. As m∗ is an NNE at ω, we

have g(m∗) ∈ ∩i∈NCωi (X), which implies g(m∗) ∈ f (ω) since SCC f on Ω̃ is unanimous.

Proof of (2.i) of Theorem 3. Following the proof of (2.i) of Theorem 1, we just need to show

(2.iii) of Definition 3. Suppose x ∈ Cωi (X) for all i ∈ N \ { j} for some j ∈ N and there are y ∈ X

and ω̃ ∈ Ω with y ∈ f (ω̃) such that x ∈ Cωj (S (y, ω̃)). Because y ∈ f (ω̃), there is an ANE my,ω̃ of µ

at ω̃ such that g(my,ω̃) = y. Recall that Oµi (my,ω̃
−i ) = S (y, ω̃) for all i ∈ N. Thus, for all i ∈ N \ { j}, we

have x ∈ Cωi (S (y, ω̃)) as x ∈ Cωi (X) for all i ∈ N \ { j} due to the IIA. Additionally, x ∈ Cωj (S (y, ω̃))

implies that my,ω̃ is an ANE of µ at ω as well. Hence, x ∈ f (ω) by (iv) of Definition 1.

Proof of (2.ii) of Theorem 3. As strong anonymous consistency implies anonymous consistency,

the proof follows from (2.ii) of Theorem 1.

We use the following three lemmata to relate anonymous implementation and no-envy imple-

mentation in the rational domain by replacing no-veto property with unanimity in Corollary 2.

Lemma 1. Given an environment ⟨N, X,Ω, (Cωi )i∈N, ω∈Ω⟩ and SCC f : Ω̃ → X, if there is a profile

of sets strong anonymous consistent with SCC f on domain Ω̃, then there is a profile of sets strong

no-envy consistent with SCC f on domain Ω̃.

Proof. Let S := (S (x, ω))ω∈Ω̃, x∈ f (ω) be the profile of sets strong anonymous consistent with f on

domain Ω̃. Define S̃ := (S i(x, ω))i∈N,ω∈Ω̃, x∈ f (ω) such that S i(x, ω) = S (x, ω) for all i ∈ N. Then,

(1.i), (1.ii), and (1.iii) of strong no-envy consistency follows directly from (2.i), (2.ii), and (2.iii)

of strong anonymous consistency.

Lemma 2. If f on Ω̃ is full-range and anonymous implementable on Ω̃, then f on Ω̃ is unanimous.

Proof. Let f : Ω̃ → X be full-range and anonymous implementable by mechanism µ = (M, g).

Suppose for some ω ∈ Ω̃, x ∈ Cωi (X) for all i ∈ N. As f is full-range, there is ω̂ ∈ Ω̃ such that

x ∈ f (ω̂). Further, there is an ANE mx,ω̂ of µ at ω̂ such that g(mx,ω̂) = x by (iii) of Definition 1

(anonymous implementability). Thus, Oµi (mx,ω̂
−i ) = Oµj (m

x,ω̂
− j ) = S for all i, j ∈ N for some S ∈ X. It

follows from the IIA that x ∈ Cωi (S ) for all i ∈ N as x ∈ Cωi (X) for all i ∈ N. This implies mx,ω̂ is

an ANE of µ at ω as well. Therefore, x ∈ f (ω) by (iv) of Definition 1.

Lemma 3. If f on full domain Ω is unanimous, then f on Ω is full-range.
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Proof. Let f : Ω → X be unanimous and x ∈ X and define ωx such that x ∈ Cω
x

i (X) for all i ∈ N.

Then, ωx ∈ Ω since there is no domain restrictions; by unanimity, we conclude that x ∈ f (ωx).

Proposition 2. Given a rational environment ⟨N, X,Ω, (Cωi )i∈N, ω∈Ω⟩ and f : Ω̃ → X, let n ≥ 3. If

f on Ω̃ is full-range and anonymous implementable on Ω̃, then f is no-envy implementable on Ω̃.

Proof. If f is anonymous implementable on Ω̃, Theorem 3 implies the existence of a strong

anonymous consistent profile of sets, which implies, by Lemma 1, the existence of a strong no-envy

consistent profile of sets. On the other hand, if f is full-range and anonymous implementable on Ω̃,

then it is unanimous on Ω̃ by Lemma 2. Therefore, as f is unanimous and a profile of sets strong

no-envy consistent with f exists, it follows from Theorem 3 that f is no-envy implementable.

These deliver the following conclusion in the full rational domain:

Corollary 3. Given a rational environment ⟨N, X,Ω, (Cωi )i∈N, ω∈Ω⟩, let n ≥ 3. A unanimous SCC

f is no-envy implementable on full domain Ω if and only if it is full-range and anonymous imple-

mentable on Ω.

6 The Behavioral Domain

In this section, we establish that the equivalence of no-envy consistency and anonymous con-

sistency breaks down in the behavioral domain. That enables us to provide an example involving

an SCC that is no-envy implementable but neither anonymous nor Nash implementable.

Our two agents, Ann and Bob, again face three alternatives, a, b, c. The domain Ω̃ consists of

{ω(1), ω(2), ω(3)}, and individuals’ state-contingent choices are as in Table 3. The planner aims to

S Cω
(1)

A (S ) Cω
(1)

B (S ) Cω
(2)

A (S ) Cω
(2)

B (S ) Cω
(3)

A (S ) Cω
(3)

B (S )
{a, b, c} {b} {b} {b} {b} {b} {b}
{a, b} {a} {a, b} {a, b} {a, b} {a} {b}
{a, c} {a, c} {a} {c} {c} {a, c} {a, c}
{b, c} {c} {b} {b} {b} {b, c} {c}

Table 3: Individuals’ state-contingent choices.

implement SCC f : Ω̃→ X given by f (ω(1)) = {a}, f (ω(2)) = {b, c}, and f (ω(3)) = {c}.

We now show that the mechanism in Table 4 no-envy implements SCC f . At ω(1), we see

that the NE is given by (U, L) and (C,R); hence, NEµ(ω(1)) = {a, b}. Because a ∈ Cω
(1)

B (OµA(L)) ∩

Cω
(1)

A (OµB(U)), (U, L) (depicted with a circle) is a NNE of µ at ω(1); yet, b < Cω
(1)

A (OµB(C)) implies

(C,R) is not a NNE of µ at ω(1). Ergo, NNEµ(ω(1)) = {a} = f (ω(1)). The NE of µ at ω(2) are
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Bob

Ann

L M R
U a c a

C b c b
D b c c

Table 4: The mechanism.

(U,M), (C, L), and (C,R). As c ∈ Cω
(2)

B (OµA(M))∩Cω
(1)

A (OµB(U)) and b ∈ Cω
(2)

B (OµA(L))∩Cω
(1)

A (OµB(c)),

(U,M) and (C, L) (depicted via diamonds) are NNE of µ at ω(2), and because all NE outcomes

are aligned with f , we conclude that NNEµ(ω(2)) = {b, c} = f (ω(2)). Finally, the NE of µ at ω(3)

are (U, L), (U,M), (C,M), and (D,M). We see that c ∈ NNEµ(ω(3)) since c ∈ Cω
(3)

B (OµA(M)) ∩

Cω
(1)

A (OµB(C)) establishing that (C,M) (depicted with a square around it) is a NNE of µ at ω(3). But,

a < NNEµ(ω(3)) because a < Cω
(3)

B (OµA(L)) implies (U, L) is not a NNE of µ at ω(3). Because that all

other NE of µ at ω(3) result in c, we conclude that NNEµ(ω(3)) = {c} = f (ω(3)).

Our necessity result for no-envy implementation, Theorem 1−(1.i), applies as mechanism µ

of Table 4 no-envy implements SCC f on {ω(1), ω(2), ω(3)}. Thus, the following profile of sets

S = (S i(x, ω))i=A,B ω=ω(1),ω(2),ω(3), x∈ f (ω) is no-envy consistent with f on this domain:

S A(a, ω(1)) = {a, b} S B(a, ω(1)) = {a, c},

S A(b, ω(2)) = {a, b} S B(b, ω(2)) = {b, c},

S A(c, ω(2)) = {c} S B(c, ω(2)) = {a, c},

S A(c, ω(3)) = {c} S B(c, ω(3)) = {b, c}.

We next show that there is no profile of sets anonymous consistent with SCC f on domain

{ω(1), ω(2), ω(3)}. Therefore, SCC f on domain {ω(1), ω(2), ω(3)} is not anonymous implementable.

To see that, first we note that S (a, ω(1)) cannot equal {a, b} because a ∈ Cω
(2)

A ({a, b}) ∩ Cω
(2)

B ({a, b})

and a < f (ω(2)). Similarly, S (a, ω(1)) cannot be {a, c} because a ∈ Cω
(3)

A ({a, c}) ∩ Cω
(3)

B ({a, c}) and

a < f (ω(3)). The last remaining candidate for S (a, ω(1)) given by {a} involves a triviality since

a ∈ CωA ({a})∩CωB({a}) for allω ∈ {ω(1), ω(2), ω(3)} and a < f (ω(k)), k = 2, 3. As we have exhausted all

possible candidates for S (a, ω(1)), we conclude that there is no profile of sets anonymous consistent

with SCC f on domain {ω(1), ω(2), ω(3)}.

Below, we establish that SCC f on {ω(1), ω(2), ω(3)} is not implementable in NE by proving that

there is no profile of sets consistent with SCC f on {ω(1), ω(2), ω(3)} while the rest of the argument

follows from the necessity result of de Clippel (2014) for Nash implementation.

The individuals’ choices overlap perfectly at state ω(2), the choice data given in Table 3 reveals
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that the need for consistency—the requirement of c ∈ Cω
(2)

i (S i(c, ω(2))) for i = A, B—implies four

cases when identifying S i(c, ω(2)) for i = A, B.

Case 1: S i(c, ω(2)) = {a, c} for i = A, B. Then, consistency does not hold as a ∈ Cω
(3)

A ({a, c}) ∩

Cω
(3)

B ({a, c}) and a < f (ω(3)).

Case 2: S i(c, ω(2)) = {c} for i = A, B. Then, c ∈ Cω
(1)

A ({c}) ∩ Cω
(1)

B ({c}) and c < f (ω(1)) show that

consistency does not hold.

Case 3: S A(c, ω(2)) = {a, c} and S B(c, ω(2)) = {c} leads to a failure of consistency since c ∈

Cω
(1)

A ({a, c}) ∩Cω
(1)

B ({c}) and c < f (ω(1)).

Case 4: The last case involves S A(c, ω(2)) = {c} and S B(c, ω(2)) = {a, c}.

At that stage, we observe that consistency compels S A(a, ω(1)) to equal {a, c}15: We go over six

cases. First, a ∈ Cω
(2)

A ({a, b})∩Cω
(2)

B ({a, b}) and a < f (ω(2)) eliminates the possibility of S A(a, ω(1)) =

S B(a, ω(1)) = {a, b}. Second, S A(a, ω(1)) = {a, b} and S B(a, ω(1)) = {a, c} also does not work since

a ∈ Cω
(3)

A ({a, b}) ∩ Cω
(3)

B ({a, c}) and a < f (ω(3)). Third, S A(a, ω(1)) = {a, b} and S B(a, ω(1)) = {a}

simply is no good because a ∈ Cω
(3)

A ({a, b}) ∩Cω
(3)

B ({a}) and a < f (ω(3)). The fourth possibility is to

have S A(a, ω(1)) = {a} and S B(a, ω(1)) = {a, b} does not work because a ∈ Cω
(2)

A ({a}) ∩ Cω
(2)

B ({a, b})

and a < f (ω(2)). The fifth involves S A(a, ω(1)) = {a} and S B(a, ω(1)) = {a, c}, which is no good

as a ∈ Cω
(3)

A ({a}) ∩ Cω
(3)

B ({a, c}) and a < f (ω(3)). The sixth and final case involves S A(a, ω(1)) =

S B(a, ω(1)) = {a}, and is also no good as a ∈ Cω
(k)

A ({a}) ∩Cω
(k)

B ({a}) and a < f (ω(k)) for k = 2, 3.

Next, we show consistency implies S B(a, ω(1)) = {a, b} thanks to the conclusion that S A(a, ω(1)) =

{a, c}. The choice data of Bob at ω(1) implies that Bob chooses a at ω(1) from {a, b}, {a, c}, and {a}.

S B(a, ω(1)) = {a, c} = S A(a, ω(1)) does not work since a ∈ Cω
(3)

A ({a, c})∩Cω
(3)

B ({a, c}) but a < f (ω(3));

S B(a, ω(1)) = {a} is no good because a ∈ Cω
(3)

A ({a, c}) ∩ Cω
(3)

B ({a}) but a < f (ω(3)). So, consistency,

demanding a ∈ Cω
(1)

B (S B(a, ω(1))), requires S B(a, ω(1)) = {a, b}.

But then, we observe that S A(c, ω(2)) = {c} and S B(a, ω(1)) = {a, b} produce a contradic-

tion: Consider any mechanism µ = (M, g) that were to implement SCC f in NE on domain

{ω(1), ω(2), ω(3)}. Let ma,ω(1)
be the NE of µ at ω(1) with g(ma,ω(1)

) = a ∈ f (ω(1)) and note that

OµB(ma,ω(1)

A ) = {a, b} (due to the consistency requirement that S B(a, ω(1)) = {a, b}). Similarly, let

mc,ω(2)
the NE of µ at ω(2) with g(mc,ω(2)

) = c ∈ f (ω(2)). If OµA(mc,ω(2)

B ) = {c} (on account of

S A(c, ω(2)) = {c} under consistency), then g : M → X is not well-defined because g(ma,ω(1)

A ,mc,ω(2)

B ) ∈

OµA(mc,ω(2)

B ) ∩ OµB(ma,ω(1)

A ) = ∅.16

15We wish to point out that this endeavor can be easily accomplished by using the Python codes (for the identification
of two-individual consistent profile of sets) supplied in Barlo and Dalkıran (2022a). Nevertheless, in what follows, we
supply the formal arguments for reasons of completeness.

16This line of reasoning originates from Dutta and Sen (1991). Along the same lines, Barlo and Dalkıran (2022a)
identifies a two-individual consistency requirement which is necessary for Nash implementation with two individuals
and requires that S A(x, ω) ∩ S B(y, ω̃) , ∅ for any x ∈ f (ω), y ∈ f (ω̃) for some ω, ω̃ ∈ Ω̃.
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7 Efficiency

In rational environments, the Pareto SCC on the full domain Ω, PO : Ω→ X, is defined by

PO(ω) := {x ∈ X | ∄y∗ ∈ X s.t. y∗Pωi x ∀i ∈ N}

for any ω ∈ Ω. On the other hand, in behavioral environments, we consider the efficiency SCC

introduced by de Clippel (2014), Eeff : Ω→ X, which is defines as follows

Eeff(ω) := {x ∈ X | ∃(S i)i∈N ∈ X
N s.t. x ∈ ∩i∈NCωi (S i) and ∪i∈N S i = X}

for any ω ∈ Ω. We know that when Ω̃ is a subset of the rational domain, then these two notions

coincide, and hence efficiency SCC is an extension of the Pareto SCC to behavioral domains (de

Clippel, 2014). Moreover, when choices are nonempty-valued, so are these SCCs: We observe that

for all ω (in rational or behavioral domains) x ∈ Cω1 (X) implies x ∈ Eeff(ω) by setting S 1 = X and

S j = {x} for all j , 1.

Below, we report bad news about the no-envy and anonymous implementation of these effi-

ciency notions.

We observe that PO is not anonymous and no-envy implementable in the full rational domain

whenever choices are non-empty valued due to the following: Suppose PO were anonymous imple-

mentable on the full rational domain and consider two states ω, ω̃ such that Lω1 (x) = X, Lω2 (x) = {x},

and ∪i∈N Lω̃i (x) , X. Then, x ∈ PO(ω) \ PO(ω̃). Further, Lω2 (x) = {x} implies Oµi (mω,x
−i ) = {x} for

all i ∈ N where mω,x ∈ M is an ANE sustaining x at ω. But then, mω,x is also an ANE at state ω̃

as x ∈ ∩i∈NCω̃i ({x}). Therefore, PO is not anonymous implementable in the full rational domain.

Recall that by part 2 of Corollary 2, we know that under rationality, if an SCC is no-veto, then it

is anonymous implementable if and only if it is no-envy implementable. As PO is a no-veto SCC,

we conclude that PO is not no-envy implementable in the full rational domain as well.

We show that the failure of the anonymous implementability of efficiency extends to the be-

havioral domain whenever there are two states ω and ω̃ in the domain Ω̃ on which efficiency SCC

is defined and an alternative x ∈ X with x ∈ Eeff(ω) \ Eeff(ω̃) such that for any S ∈ X, x is chosen

from a set S at ω by all individuals implies x continues to be chosen from S at ω̃ by all agents. For

example, such an instance occurs if the following holds: There is a state ω ∈ Ω̃ such that x ∈ Cωi (X)

for some i ∈ N and x < Cωj (S ) unless S = {x} for some j ∈ N; hence, x ∈ Eeff(ω). Also, there is

another state ω̃ ∈ Ω̃ and a set S̄ , X with x ∈ S̄ such that for all i ∈ N, x ∈ Cω̃i (S ) implies S ⊂ S̄ .

Thus, x < Eeff(ω̃). Then, Eeff is not anonymous implementable on Ω̃.
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Proposition 3. Given an environment ⟨N, X,Ω, (Cωi )i∈N, ω∈Ω⟩, efficiency SCC Eeff : Ω̃→ X

1. is not no-envy implementable on Ω̃ whenever there are ω, ω̃ ∈ Ω̃ and x ∈ Eeff(ω) \ Eeff(ω̃)

such that for any profile of sets (S j) j∈N ∈ X
N and all i, j ∈ N, x ∈ Cωi (S j) implies x ∈ Cω̃i (S j);

2. is not anonymous implementable on Ω̃ whenever there are ω, ω̃ ∈ Ω̃ and x ∈ Eeff(ω) \Eeff(ω̃)

such that for all S ∈ X, x ∈ ∩i∈NCωi (S ) implies x ∈ ∩i∈NCω̃i (S ).

Proof of Proposition 3. To see part 1: Let Ω̃ ⊂ Ω be a domain such that there areω(1), ω(2) ∈ Ω̃ and

x∗ ∈ Eeff(ω(1)) \ Eeff(ω̃(2)) where for any profile of sets (S j) j∈N ∈ X
N and all i, j ∈ N, x∗ ∈ Cω

(1)

i (S j)

implies x∗ ∈ Cω
(2)

i (S j). Let mx∗,ω(1)
be the NNE of µ at ω(1) such that g(mx∗,ω(1)

) = x∗. Consider the

profile of sets (S j) j∈N defined by S j := Oµj (m
x∗,ω(1)

− j ) for all j ∈ N. Since mx∗,ω(1)
is an NNE of µ at

ω(1), we have x∗ ∈ Cω
(1)

i (S j) for all i, j ∈ N; hence, by hypothesis, x∗ ∈ Cω
(2)

i (S j) for all i, j ∈ N.

Then, mx∗,ω(1)
is also an NNE of µ at ω(2). So, x∗ ∈ Eeff(ω(2)), (as µ no-envy implements Eeff), a

contradiction.

To see part 2: Let Ω̃ ⊂ Ω be a domain such that there are ω(1), ω(2) ∈ Ω̃ and x∗ ∈ Eeff(ω(1)) \

Eeff(ω̃(2)) such that for any S ∈ X, x∗ ∈ ∩i∈NCω
(1)

i (S ) implies x∗ ∈ ∩i∈NCω
(2)

i (S ). Then, there is an

ANE mx∗,ω(1)
of µ at ω(1) such that g(mx∗,ω(1)

) = x∗. Let Oµi (mx∗,ω(1)

−i ) = S ∗ for all i ∈ N, and hence,

x∗ ∈ ∩i∈NCω
(1)

i (S ∗), which implies x∗ ∈ ∩i∈NCω
(2)

i (S ∗) by hypothesis. Then, mx∗,ω(1)
is also an ANE

of µ at ω(2). So, thanks to µ anonymous implementing Eeff, x∗ ∈ Eeff(ω(2)), a contradiction.

Notwithstanding, anonymous/no-envy implementation of the Pareto SCC on rational subdo-

mains can be achieved as the following example demonstrates: Let us refer to two individuals as

Ann and Bob, X = {a, b, c}, Ω̃ = {ω(1), ω(2)}, where individuals’ strict rankings are as in Table 5.

Pareto SCC PO on Ω̃ is given by PO(ω(1)) = {a, b} and PO(ω(2)) = {b, c}. One can verify that the

ω(1) ω(2)

Rω
(1)

A Rω
(1)

B
a b
b a
c c

Rω
(2)

A Rω
(2)

B
b c
c b
a a

Table 5: Anonymous implementation of Pareto SCC on a rational subdomain.

mechanism in Table 6 anonymous and no-envy implements the Pareto SCC on domain Ω̃ where

the set of ANE equals the set of NNE in each state —we depict ANE/NNE at ω(1) by circling the

corresponding cells and those at ω(2) by using squares.
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Bob

Ann

L M1 M2 R
U a c c a
C1 c b c b
C2 c c c a
D a b a b

Table 6: The mechanism implementing SCC PO on a rational subdomain.

8 Double implementation

When the institutions addressing individuals’ objections based on ex-post fairness violations

are not present or are not functioning properly, the planner may worry about and seek to avoid

‘bad’ NE outcomes, resulting in alternatives not aligned with the planner’s goal. Thus, she may

find double implementation in NNE and NE (alternatively, ANE and NE) appealing. In this section,

we analyze double implementation in NNE and NE (as well as ANE and NE).

A mechanism µ double implements SCC f in NNE and NE on domain Ω̃ if for all ω ∈ Ω̃,

f (ω) = NNEµ(ω) = NEµ(ω). Similarly, a mechanism µ double implements SCC f in ANE and
NE on domain Ω̃ if for all ω ∈ Ω̃, f (ω) = ANEµ(ω) = NEµ(ω).

Below, we present our necessity and sufficiency results concerning double implementation,

where we refer to consistency of de Clippel as NE-consistent to avoid possible confusion.

Theorem 4. Given an environment ⟨N, X,Ω, (Cωi )i∈N, ω∈Ω⟩,

1. [Necessity and sufficiency for double implementation in NNE and NE:]

(i) if SCC f : Ω̃ → X is double implementable in NNE and NE on Ω̃, then there are

profiles of sets that are no-envy consistent and NE-consistent with f on Ω̃,

(ii) if there is a profile of sets no-envy consistent with SCC f : Ω̃ → X, then f is double

implementable in NNE and NE on Ω̃ whenever the environment is economic and n ≥ 3.

2. [Necessity and sufficiency for double implementation in ANE and NE:]

(i) if SCC f : Ω̃ → X is double implementable in ANE and NE on Ω̃, then there are

profiles of sets that are anonymous consistent and NE-consistent with f on domain Ω̃,

(ii) if there is a profile of sets anonymous consistent with SCC f : Ω̃→ X, then f is double

implementable in ANE and NE on Ω̃ whenever the environment is economic and n ≥ 3.
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Proof of (4.1.i) and (4.2.i) of Theorem 4. These necessity results follow from our Theorem 1

and de Clippel (2014)[Proposition 2.a.]

Proof of (4.1.ii) and (4.2.ii) of Theorem 4. In both of the mechanisms we use in our sufficiency

results given in Theorem 1, there is no NE under Rule 2 and Rule 3 as the environment is economic.

The proof concludes because by construction the mechanism we employ in the proof of Theorem

1.1.ii (Theorem 1.2.ii), all NE that arise under Rule 1 are NNE (ANE, respectively).

Using Theorem 2 and Theorem 4, we conclude that double implementability in NNE and NE

is equivalent to double implementability in ANE and NE in rational economic environments with

at least three individuals.

While obvious, we wish to mention that any SCC that is double implementable in NNE and

NE (ANE and NE) is implementable in NNE (ANE, respectively). However, the converse does

not hold as our example in Section 3 displays. The mechanism of that example possesses a ‘bad’

NE, namely, message profile (D,M), resulting in alternative a that is not aligned with SCC f at

state ω(2) as f (ω(2)) = {b}. Because all NNE and ANE outcomes in that example equal to SCC f

across all the states and this particular bad NE is not an NNE or ANE, we observe that SCC f is

implementable in NNE and ANE but neither double implementable in NNE and NE nor double

implementable in ANE and NE.

Finally, we compare double implementation in ANE and NE to Nash implementation with

Equality of Attainable Sets (EAS) introduced by Gaspart (2003) as their founding motivations re-

semble one another. Recall that this implementation notion is as follows: Mechanism µ implements

SCC f on domain Ω̃ in NE with EAS if (i) for all ω ∈ Ω̃, f (ω) = NEµ(ω), and (ii) for all ω ∈ Ω̃

and all m∗ ∈ NEµ(ω), Oµi (m∗
−i) = Oµj (m

∗
− j) for all i, j ∈ N.

It is easy to see that if a mechanism µ implements an SCC in NE with EAS, then µ dou-

ble implements this SCC in ANE and NE. Thus, implementability in NE with EAS implies double

implementability in ANE and NE. However, the converse does not hold as we display using the fol-

lowing example (in the rational domain), in which there is an SCC which is double implementable

in ANE and NE but not Nash implementable with EAS.

These observations and examples demonstrate that NE implementability with EAS is the least

permissive notion of implementation when compared with anonymous implementation and double

implementation in ANE and NE.

Let Ω̃ = {ω(1), ω(2)} and the individuals’ preferences be given by Table 7. Consider SCC

f : Ω̃ → X given by f (ω(1)) = {x, y} and f (ω(2)) = {y, z}. One can see that there are six NE

at ω(1) in the mechanism given in Table 7: (U, L), (U,C), (U,R), (M, L), (M,C) and (M,R), all

but (U, L) lead to outcome y whereas (U, L) leads to x. Furthermore, there are only two ANE at
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ω(1) ω(2)

Rω
(1)

A Rω
(1)

B
x ∼ y z

z x ∼ y

Rω
(2)

A Rω
(2)

B
z ∼ y x

x y ∼ z

Bob

Ann

L C R
U x y y
M y y y
D y y z

Table 7: Individuals’ state-contingent rankings and the mechanism.

ω(1): (U, L) and (M,C), leading to x and y, respectively. On the other hand, there are six NE at

ω(2) as well: (M, L), (M,C), (M,R), (D, L), (D,C) and (D,R), all but (D,R) lead to outcome y

whereas (D,R) leads to z. Moreover, there are two ANE at ω(2): (M,C) and (D,R), leading to y

and z, respectively. Therefore, the mechanism in Table 7 double implements SCC f in ANE and

NE on domain Ω̃ as for all ω ∈ Ω̃, f (ω) = ANEµ(ω) = NEµ(ω). However, this mechanism does

not implement SCC f in NE with EAS since (U,R) is NE at ω(1) where individuals have different

opportunity sets (which is the case for many other NE as well).

In what follows, we establish that there is no mechanism that Nash implements SCC f with

EAS on Ω̃. Observe that in any mechanism that delivers x as a NE outcome at ω(1) with EAS, the

associated opportunity set must be {x, y}; in any mechanism that sustains z via a NE at ω(2) with

EAS, the associated opportunity set must be {y, z}.17 Thus, if a mechanism µ = (M, g) were to

Nash implement SCC f with EAS on Ω̃, then there would exist m∗1 ∈ M1 and m∗2 ∈ M2 such that

Oµ2(m∗1) = {x, y} and Oµ1(m∗2) = {y, z}; hence, g(m∗1,m
∗
2) = y. Further, y ∈ Cω

(1)

1 ({y, z}) ∩ Cω
(1)

2 ({x, y}).

Hence, m∗ = (m∗1,m
∗
2) would be a NE at ω(1) with Oµ1(m∗2) , Oµ2(m∗1). This implies that in any

mechanism that Nash implements SCC f , there exists a NE in which individuals have different

opportunity sets. Therefore, SCC f is not Nash implementable with EAS.

9 Concluding Remarks

We consider Nash implementation under complete information with the additional feature that

planners must adhere to fairness when designing mechanisms and shaping individuals’ unilateral

deviation opportunities. Our notion of full implementation, anonymous implementation, demands

the following: First, any socially optimal alternative at any one of the given states is attainable via

a Nash equilibrium (NE) at that state, which provides the same opportunity set for all individu-

als. Second, any such NE at any one of the states must be socially optimal at that state. We also

17There are only two sets from which Bob chooses x at ω(1): {x} and {x, y}; using {x} as the opportunity set at ω(1)

for x does not work because then x would arise an ANE at ω(2), which is not aligned with SCC f as f (ω(2)) = {y, z}.
Similarly, there are only two sets from which Bob chooses z at ω(2): {z} and {y, z}; employing {z} as the opportunity set
at ω(2) for z is no good because then z would arise an ANE at ω(1), not aligned with SCC f as f (ω(1)) = {x, y}.
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propose a related full implementation notion, no-envy implementation: First, any socially optimal

alternative at any one of the states can be achieved via a NE at that state, with the additional re-

quirement that each individual chooses that alternative from others’ opportunity sets. Second, any

such NE at any one of the states must be socially optimal at that state. We identify necessary and

(almost) sufficient conditions for anonymous as well as no-envy implementation of social choice

correspondences (SCCs). Further, we show that there are anonymous and no-envy implementable

collective goals that fail to be Nash implementable. Therefore, fairness considerations may pro-

vide society with additional implementable SCCs that are otherwise not Nash implementable. We

show that anonymous implementation and no-envy implementation are equivalent in rational en-

vironments with at least three individuals and no-veto SCCs. However, this equivalence does not

hold in behavioral environments.
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